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ABSTRACT
We present a method for inferring the relative molar abundance of constituents of a liquid
mixture, in this case methane, ethane, nitrogen and argon, from a measurement of a set of
physical properties of the mixture. This problem is of interest in the context of the Huygens
Surface Science Package, SSP, equipped to measure several physical properties of a liquid
in case of a liquid landing on Saturn’s moon Titan. While previous models emphasized the
possibility of verifying a certain model proposed by atmospheric composition and equations
of state, we use an inverse approach to the problem, i.e. we will infer the liquid composition
strictly from our measurements of density, refractive index, permittivity, thermal conductivity
and speed of sound. Other a priori information can later be used to improve (or reject) the
model obtained from these measurements.

Key words: instrumentation: miscellaneous – methods: numerical – techniques: miscella-
neous – planets and satellites: individual: Titan.

1 I N T RO D U C T I O N

The Huygens probe, released from the Cassini orbiter to descend
into the atmosphere of Saturn’s large moon Titan on 2005 January
14, had the objective to analyse the atmospheric constituents, phys-
ical properties and dynamics before impacting the surface. During
the descent, the instruments on board Huygens performed optical
and IR imaging and spectrometry and also recorded atmospheric
composition (including aerosols), temperature, pressure, winds and
electrical properties.

1.1 Liquid surfaces on Titan

The nature of Titan’s surface remains an open question until the ar-
rival of the Huygens probe because Titan’s distance and the haze in
the atmosphere limit remote observations. A deep, global ocean of
hydrocarbons was proposed by Flasar (1983) and Lunine, Stevenson
& Yung (1983), based on photochemical models and the abundance
of methane in the atmosphere. This view clearly influenced the de-
sign of the Cassini–Huygens mission. More than a decade later, a
global ocean is ruled out by ground-based maps (e.g. Smith et al.
1996), but Lara, Lorenz & Rodrigo (1994) stress the need for a
photochemical reservoir – either in the form of subsurface storage
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in regolith, as presented by Kossacki & Lorenz (1996), or in lakes
and seas. Recently, specular radar reflections from 12 out of 16 sites
examined by Campbell et al. (2003) have indicated smooth surfaces
on Titan, consistent with hydrocarbon seas. Imaging of Titan during
recent flybys shows a very diverse surface, which does not rule out
liquids.

1.2 Scientific objectives of Huygens SSP

The Huygens Surface Science Package (SSP) consists of nine inde-
pendent sensors. Its primary objective is to characterize the surface
Huygens impacts after its descent. Seven of the sensors are mounted
in a cavity in the foredome of the Huygens probe. The main objec-
tives, given by Zarnecki et al. (2002), are to:

(i) determine the physical nature and condition of Titan’s surface
at the landing site;

(ii) determine the abundances of the major ocean constituents,
placing bounds on atmospheric and ocean evolution;

(iii) measure the thermal, optical, acoustic and electrical proper-
ties and density of any ocean, providing data to validate physical
and chemical models;

(iv) determine wave properties and ocean/atmosphere interac-
tions;

(v) provide ground truth for interpreting large-scale Orbiter
Radar Mapper and other experimental data.
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1.3 Aim of this work

The method in this work was developed with the Huygens SSP ex-
periment in mind, which is why we start with the assumption that
the Huygens probe will land in a liquid that is a mixture of methane,
ethane, nitrogen (and argon). The applicability of our method, how-
ever, is not limited to this experiment, nor is it limited to this partic-
ular mixture of constituents. It can be seen as a general method to
determine quantitatively the composition of a liquid from measure-
ments of its physical properties, given constraints on its potential
components. We will show how, under certain conditions, a reliable
model of constituents composing the liquid can be derived from the
physical properties, for example as measured by SSP’s sensors. For
this purpose, we approximate equations of state and present an al-
gorithm to find the desired solution. The robustness of our method
will be demonstrated in a few test cases.

2 P H Y S I C A L P RO P E RT I E S O F M I X T U R E S

We need to specify which physical properties are measured before
we elaborate the mixing rules used.

2.1 Measuring physical properties: the SSP sensors

SSP measures five physical properties of its environment: speed of
sound, density, permittivity, refractive index and thermal conduc-
tivity. Apart from that, two accelerometers and a tilt sensor record
the dynamics of the descent and impact, and a sounder will deter-
mine the depth of any surface liquid. Table 1 shows a listing of all
sensors.

2.2 Linking physical properties and composition: mixing rules

In the following we shall present equations to approximate the prop-
erties of a liquid mixture of n components. The quantities to be de-
termined are the mole fractions x = [x 1, . . . , xn] of the n constituents
of the mixture. The volumetric fractions of the individual compo-
nents are denoted by φ = [φ1, . . . , φn]. The relation between mole
fractions and volumetric fractions is approximated by Amagat’s law

φi = xi Vi∑
j x j Vj

, (1)

where Vi is the molar volume of component i at the pressure and
temperature of the measurement and xi is the mole fraction of com-
ponent i.

Table 1. SSP sensor subsystems.

Acronym Sensor Description

Physical property related
API–V Acoustic properties – speed of sound Pair of piezoelectric transducers
DEN Density Archimedes principle float
PER Permittivity Parallel plate capacitor to determine electrical permittivity and conductivity
REF Refractometer Critical angle refractometer
THP Thermal properties Transient hot-wire sensor to determine temperature and thermal conductivity

Dynamics related
ACC–E External accelerometer Force transducer to characterize impact
ACC–I Internal accelerometer Accelerometer to characterize descent and impact
API–S Acoustic properties – sounder Array of piezoelectric sensors, ‘sonar’ principle
TIL Tilt Electrolytic tilt sensor (2 axis)

2.2.1 Density

In a first approximation, the bulk density ρ of our mixture is given
by

d1(φ) = ρ =
∑

i

ρiφi , (2)

where ρ i is the density of the pure substance i. We assume pressure
and temperature to be known and constant.

2.2.2 Refractive index

Badoz et al. (1992) assumed a linear relationship between the re-
fractive index n of the mixture and those of the pure components ni

such that n = ∑
i ni xi . An expression in terms of volume fractions

d2(φ) = n =
∑

i

niφi (3)

is used in our case. This approximation is in slightly better agreement
with the data of Badoz et al. (1992) than their model, provided the
right expressions are used for density of dissolved nitrogen (cf.
appendix A).

2.2.3 Thermal conductivity

Reid, Prausnitz & Sherwood (1977) present the Li equation as a
possible way of approximating the bulk thermal conductivity of a
mixture of liquids. According to this, the bulk thermal conductivity
λ can be expressed in terms of the thermal conductivity of the pure
components λi, j by

d3(φ) = λ =
∑

i

∑

j

φiφ jλi j , (4)

with

λi j = 2

1/λi + 1/λ j
.

2.2.4 Electrical permittivity

To date, there are only very few measurements of electrical permit-
tivity available at low temperatures. On the other hand, permittivity
data for ethane, methane, nitrogen and argon under normal con-
ditions are abundant. Using the Clausius–Mosotti equation, these
values can be inserted into a density-dependent equation of the form

d4(φ) = ε = −3(∑
i φi ENB

i Pi

) − 1
− 2, (5)
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with

ENB
i = εi − 1

εi + 2

∣∣∣
293 K, 1013 mbar

and

Pi =
ρ

liquid
i

∣∣
T ,p

ρ
gas
i

∣∣
293 K, 1013 mbar

,

where T and p are the temperature and pressure at the point where
the measurement takes place. As all components considered in our
model consist of non-polar molecules, this is a valid approximation,
as pointed out by Sen, Anicich & Arakelian (1992). It should also be
pointed out that the electrical permittivity of non-polar substances
ideally equals the square of its refractive index.

2.2.5 Speed of sound

No previous work on the speed of sound of liquid mixtures could be
found. We derived a linear mixing rule by comparing its value for cs

against the values given by the equations of state of Peng & Robinson
(1976), using the National Institute of Standards and Technology
(1993) physical property data base. Values were in reasonably good
agreement, within a few per cent, if the following equation was used:

d5(φ) = cs =
∑

i

ciφi . (6)

2.2.6 Mixture of n components

As an additional constraint, we assume that the volume fraction of
substances other than the n components whose physical properties
are known is negligible, i.e.

d6(φ) = 1 =
∑

i

φi . (7)

3 O B TA I N I N G C O M P O S I T I O N S
F RO M P RO P E RT I E S

Having set up rules that link physical properties and composition,
the following method can be used to infer a composition from a set
of measurements.

3.1 Algorithm

For the sake of simplicity, we ignore errors for the time being; we
will come back to this topic at the end of the section. Assume we
have the k measurements

dm = (d̂1, d̂2, . . . , d̂k) (8)

of the physical properties of our liquid. We seek the root of

F := dp − dm = 0, (9)

where

dp = (d1(x, p, T ), d2(x, p, T ), . . . , dk(x, p, T )) (10)

are physical properties that are predicted based on an assumed com-
position of molar fractions x. These properties are of course valid
for a certain pressure p and temperature T , but these are measured
independently and can be taken as constants, provided that neither
is changed by the measurements (and that all measurements are per-
formed in the same ambient conditions). We can solve equation (9)

iteratively. Assume we start at a ‘first guess’ composition of x0 and
we want to improve our first guess. Then with

x = x0 + �x (11)

we obtain

F(x) = F(x0) + ∂F
∂x

(x0) · �x. (12)

The residual between our property measurements and the predicted
properties from our first-guess composition is

e = −F(x0) = dm − dp(x0). (13)

If the functional shape of d p as presented by the equations in Section
2.2 is used, the original (non-linear) problem is reduced to a linear
problem where the Jacobian

J := ∂F
∂x

= ∂dp

∂x
(14)

can in fact be derived analytically, as we shall show below. The
operation in equation (11) can be repeated. We arrive at the iterative
solution

x(i+1) = x(i) + �x(i), (15)

where, in the simple case of exact measurements without errors, we
have

�x(i) = (JT J)−1 JTe. (16)

Equation (16) demands that J exists and its rank be at least equal
to n, which will generally be the case unless the physical properties
of the pure components are very similar. Otherwise a regularized
solution will have to be sought. The above solution can be extended
to include a weighting matrix W for the individual measurements (in
fact, the whole iterative procedure can be derived assuming noisy
data, as Tarantola & Valette (1982) have shown). It is quite common
to use the covariance matrix as weighting matrix W. If we ignore the
quadratic correlation between dielectric permittivity and refractive
index, we can use W to account for the variances σ i of the individual
measurements. With

Wi j = δi jσ
−2
i , (17)

where δ i j is the Kronecker delta and σ i is the variance of measure-
ment d̂ i , we can replace (16) by

�x(i) = (JTW J)−1 JTWe. (18)

3.2 Derivatives of mixing rules and the Jacobian

As we have seen in Section 2.2, most physical properties of liquid
mixtures are expressed as functions of volume fraction rather than
mole fraction. We shall account for this by putting

J = ∂dp

∂x
= ∂dp

∂φ
· ∂φ

∂x
. (19)

Inserting the equations of Section 2.2, we get

∂d1

∂φi
= ρi , (20)

∂d2

∂φi
= ni , (21)

∂d3

∂φi
=

∑

j

φ jλi j , (22)
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∂d4

∂φi
= 3ENB

i Pi[(∑
i φi ENB

i Pi

) − 1
]2 , (23)

∂d5

∂φi
= ci , (24)

and

∂d6

∂φi
= 1 (25)

for the first factor of the Jacobian, and with Amagat’s law (1), we
have

∂φi

∂x j
= δi j Vj

∑
	

x	V	 − xi Vi Vj(∑
	

x	V	

)2 (26)

for the second factor, where δ i j is the Kronecker delta. Once we have
inserted the derivatives (20)–(25) as well as (26) into the Jacobian
(19), we can use (18) and (15) to find our solution.

3.3 Sensitivity and errors

As can be seen from (19), the sensitivity of our solution, i.e. the
dependence of our final derived composition on the physical prop-
erties measured, can be expressed in a straightforward way: if our
data vector is changed by an amount δd, then, according to (18),
this affects our solution x by

δx = (JTW J)−1 JTW δd. (27)

Similarly, δd can be conceived as an error. The Jacobian allows for a
mapping of measurement errors into errors in derived composition.
With the help of (27), one can predict the impact of measurement
errors upon the inferred composition reliably.

The robustness of our method was checked in Monte Carlo simu-
lations, feeding the algorithm with measurements containing Gaus-
sian errors (see Section 4.3). The error distribution of the derived
composition also turned out to be Gaussian, as one would expect
from a robust optimization procedure.

4 T E S T C A S E S

We will present a few test cases to demonstrate the applicability and
robustness of our method.

4.1 Convergence

To demonstrate the convergence of our algorithm, we show the re-
sult of a simulation in which the composition of a ternary mixture
is derived in Fig. 1. We used a mixture of 40 per cent methane,
50 per cent ethane and 10 per cent nitrogen at 94 K and 1.5 bar.
Physical properties are simulated and error-free. Our first-guess
composition is that of equal fractions of all components. We ar-
rive at an acceptably low residual in the 1 per cent range within a
few dozen iterations.

4.2 Ternary mixture with measurement errors

Of course, one needs to test the robustness of the method when mea-
surements contain errors. The concept of errors can be applied not
only to the measurements, but also to predictions of physical prop-
erties from equations of state, because even sophisticated equations
of state can contain considerable errors, as Reid et al. (1977) have
pointed out. To test the stability of our method, we tested it with a
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Figure 1. Convergence of the iterative procedure to recover the composition
of a ternary mixture. The starting point assumes equal fractions for the three
components.

combination of experimental data (where available) and data given
by the National Institute of Standards and Technology (1993) phys-
ical properties data base. Both types of input into our algorithm
almost certainly do not follow the simple mixing rules pointed out
earlier, which is why we can consider these data as realistic simu-
lants of measurements with a combination of systematic and ran-
dom errors. We give the results of some of these experiments in
Table 2. Note that the actual and derived composition agree quite
well. We need to point out that the iterative procedure is essentially
unbounded; therefore it allows fractions of more than 100 per cent as
well as negative fractions. One could impose a strict boundary, but
we found the unbounded approach very practical as it easily allows
the identification of conflicts in our measurements or assumptions.
Such conflicts may include the presence (to a significant level) in the
mixture of a component not catered for in the solution, the presence
in the solution of a component not in the mixture, or unforeseen
offsets in the measurements. The identity of the anomalous compo-
nent(s) and the magnitude and sign of exo-boundary solutions may
also serve to indicate how the set of components available to the so-
lution may be modified to give a physical answer. Here, the objective
would be to find an alternative to component j with greater/smaller
property Pj. This is more informative than a ‘forced’ zero, which
would be ambiguous – it may indicate either a real solution, a need
for a modified set of components, or a spurious set of measure-
ments. The cause for the negative nitrogen abundance in the first
line of Table 2 belongs to the category of unforeseen offsets in the
measurements. Here, both refractive index and electrical permittiv-
ity fed into our algorithm were higher than expressed by the mixing
rules above. Among the components, nitrogen has the lowest refrac-
tive index and electrical permittivity, and ethane the highest, which
explains the final solution.

4.3 Mixture of four components

With a total of 5(+1) measurements one would assume that more
than three components of a mixture can be identified, provided that
the physical properties of the components differ sufficiently for
equation (16) to be not too ill-posed. In the context of the Huygens
mission, argon has been proposed as a possible fourth component of
the liquid on Titan. We can include argon in our model and solve for
a four-component mixture. Because there are no experimental data
of such a mix available, we performed Monte Carlo simulations by
adding Gaussian errors to simulated property measurements. Fig. 2
shows the relative distribution of inferred compositions based on
measurements with Gaussian errors with a standard deviation of
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Table 2. Test cases to infer the composition of a mixture of methane, ethane and nitrogen at 94 K and 1.5 bar. Physical properties are either taken from the
NIST chemical property data base or experimental values determined by Badoz et al. (1992)1 and Birchley (1992)2. Note the occurrence of negative fractions
that point at minor inconsistencies in our measurements (or our assumptions).

Actual composition Physical properties Derived composition
C2H6 CH4 N2 n ρ λ ε cs C2H6 CH4 N2

[vol. per cent] (at 670 nm) [g cm−3] [W Km−1] [km s−1] [vol. per cent]

53 47 0 1.35381 0.5686 0.2478 1.8328 1.8113 59.5 45.0 −4.6
0 100 0 1.28721 0.4474 0.2152 1.6569 1.5077 −1.0 99.8 1.2

96 0 4 1.38481 0.6530 0.2478 1.9177 1.9065 102.6 −3.2 0.6
50 44 6 1.34451 0.5807 0.2398 1.8077 1.7476 56.7 41.4 1.9
0 83 17 1.27241 0.4998 0.1955 1.6190 1.3107 −0.4 82.6 17.7
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Figure 2. Normalized distribution of inferred results from simulated mea-
surements containing Gaussian errors. Our input composition contains 80
per cent CH4, 10 per cent C2H6, 7 per cent N2 and 3 per cent Ar.

3 per cent of the total spread (cf. Table 3). The inferred composi-
tions have near-Gaussian distributions, which proves the robustness
of our method. The large variances, however, indicate that we are
dealing with an ill-posed problem in that uncertainties in the mea-
surement domain are inflated in the composition domain. The small
variance of the argon fraction can be explained by its favourable
combination of physical properties: it has a relatively high density
while all other properties are quite similar to those of the carbohy-
drates, making an unambiguous identification easy.

4.4 Identification of poor solutions

In Section 4.2 we have shown how, in some cases, poor solutions –
meaning solutions with a large residual – are obtained. If the ‘real’
composition is not known, the individual values of the residuals will
point at unreliable measurements. A threshold needs to be set for
an inferred composition that is considered a ‘good’ fit. In line with

Table 3. Range of physical properties of the pure constituents of our mixture
and resulting variances.

Sensor Max. Min. Std. deviation

DEN 1.3527 0.4474 0.027 (g cm−3)
REF 1.3887 1.1985 0.006 —
THP 0.2517 0.1147 0.041 (W Km−1)
PER 1.9285 1.4364 0.015 —
API–V 1.9760 0.6511 0.04 (km s−1)

the chi-squared approach, we propose

q =
k∑

i=1

e2
i

σ 2
i

(28)

as a measure for reliability of the result, where ei is the residual
between the final solution and the i-th measurement. Usually, values
of q < 1 indicate a reasonably good agreement of the measurements
and the inferred composition of the liquid.

5 C O N C L U S I O N S

We have presented a method of recovering the composition of a liq-
uid mixture from measurements of its physical properties, a problem
which emerged in the development of the Huygens Surface Science
Package. Our method is based on a few analytically simple approx-
imations of physical properties and an assumption as to what the
potential components are. We have tested the method using both
experimental and simulated data. This method was to be used for
SSP data analysis in case of a liquid landing on Titan, but it is ap-
plicable to other experimental scenarios, too. In the case of Titan,
equilibrium models of atmosphere–liquid interactions can be used
to constrain our model further or pinpoint measurements with large
errors. Considering that most of the sensors required for the physi-
cal property measurements described in this work are comparatively
inexpensive, application in other fields where chemical analyses are
not feasible could be considered. A possible application could be
the measurement of the atmospheric composition above the Martian
polar caps which changes due to the seasonal condensation of CO2,
resulting in an enrichment in argon and nitrogen (Lorenz 2000). A
combination of measurements of speed of sound and thermal con-
ductivity could identify any argon or nitrogen enrichments without
the need for a large instrument like a mass spectrometer.
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A P P E N D I X A : A N OT S O R I G O RO U S
T R E AT M E N T O F P H Y S I C A L P RO P E RT I E S

At the time of writing, a pressure of approximately 1.5 bar and
a temperature of 94 K appear to be the best assumptions for the
ambient conditions the Huygens probe will encounter.

As has been mentioned in Section 1.1, probable compositions of
a liquid mixture comprise a certain quantity of argon and nitrogen.
However, both are gaseous in their pure form at Titan’s ambient
conditions, therefore their physical properties cannot simply be in-
serted into our equations. For our purposes, we found it satisfactory
to extrapolate the physical properties of N2 or Ar from the prop-
erties found at the same pressure below the boiling point. This is
admittedly only a first-order approximation, but in our tests this

approximation turned out to be sufficiently precise. This is not sur-
prising, as the mole fractions of argon and nitrogen are not expected
to exceed a few per cent. In the absence of laboratory data we de-
rived the following empirical equations for the physical properties
at a pressure of 1.5 bar from the NIST data base (National Institute
of Standards and Technology 1993).

A1 Nitrogen

ρ(T )|1.5 bar ≈ 1.143 − 0.004 32T [g cm−3] (A1)

c(T )|1.5 bar ≈ exp(8.551 − 0.022T ) [m s−1] (A2)

λ(T )|1.5 bar ≈ 0.229 − 0.001 214T [W Km−1] (A3)

A2 Argon

ρ(T )|1.5 bar ≈ 1.929 − 0.006 131T [g cm−3] (A4)

c(T )|1.5 bar ≈ 1060.8907 − 2.835 35T [m s−1] (A5)

λ(T )|1.5 bar ≈ 0.275 4836 − 0.001 685 05T [W Km−1] (A6)
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