Geotail data analysis and related simulation results on magnetic reconnection in the magnetotail

M. Fujimoto Tokyo Institute of Technology T. Mukai JAXA/ISAS

With contributions from T. Nagai, Y. Asano, I. Shinohara, and K. Tanaka

This talk

- Where is the reconnection region located?
- What is going on at the reconnection region?
- What triggers the reconnection process?
- Future perspectives: The X-Scale mission

This talk

- Where is the reconnection region located?
- What is going on at the reconnection region?
- What triggers the reconnection process?
- Future perspectives: The X-Scale mission

Discussion on the ion-scale dynamics

Nagai et al. (JGR 2001)

How to spot the X-line location:

When the spacecraft is close to the reconnection region...

Wed Dec 22 10:38:45 2004

Solar Maximum High B and High V

X = -25 RE

Solar Wind Energy Input

Solar Wind Energy Input

High Efficiency of Solar Wind Energy Input

Near-Tail

Midtail

~20`

-20

-30Re Xosm

-30Re Xgsm

Cluster sees tailward flows at X=-19 Re while AMPTE did not.

Cluster tailward flow events give us the chance to study physics in the near-X-line region.

Another way of asking "where is the X-line?"

• In which part of the thinned current sheet?

Evolution of thin current sheets in the mid-tail region during the course of substorms

This talk

- Where is the reconnection region located?
- What is going on at the reconnection region?
- What triggers the reconnection process?
- Future perspectives: The X-Scale mission

Flow reversal -600km/s \rightarrow +300km/s In 12 sec. = 1 sampling time

Dynamic ion behavior visible in the distribution function data

Electron dynamics?

Electron dynamics?

 But there is no way beyond because of the low-time resolution (12 s) of the electron detector. Have to rely on the wave data for the moment:

Cluster has a better chance because of more chance of getting the wave form data at the right time

This talk

- Where is the reconnection region located?
- What is going on at the reconnection region?
- What triggers the reconnection process?
- Future perspectives: The X-Scale mission

The classic candidate: Lower-Hybrid Wave (LHW)

- Anomalous resistivity at the neutral sheet?
 NO.
- Anything else? YES.

GEOTAIL Observation

Did we find LH wave?

YES – GEOTAIL frequently observes LH waves in the plasma sheet (even in high β region)

NO – The observed wave power is insufficient for fast magnetic reconnection. (At least one order smaller)

Identification of Instability Mode

- Comparison between Theory & Observation
 - -Positive growth rate
 - -Close to the local LH freq.
 - -Calcluated c|B|/|E| is consistent
 - -Almost perpendicular propagation

Statistical Study on Wave (2-32 Hz) Energy Density in Plasma Sheet (1)

Plasma β dependence

Statistical Study on Wave (2-32 Hz) Energy Density in Plasma Sheet (2)

Relation between intense LHW and the highly accelerated electrons most likely close to the X-line

Yet to be inspected.

Should be a good topic for Cluster as well.

Thanks to the Uppsala team for bringing this issue to my attention.

Intense LHW at the edge: A simulation study

 It may lead to quick triggering of reconnection even if the current sheet thickness is large (~ ion scale)

3D Simulation Setup

1D Harris current sheet

~ 10⁹ particles

 m_i/m_e =400, T_i/T_e =8

Thick current sheet **D** at ion-scale

QMRT

XSC=Cross-Scale Coupling

LHDI at the edges of thick current sheet

- reduction of current density locally at the edges
 Meso-scale redistribution of current density
- = bifurcated current layer
- Anisotropic heating of electrons at the neutral sheet
- = Quick growth of tearing mode

Explosive growth, by copuling to the bi-furcated layer, of large scale reconnection

This talk

- Where is the reconnection region located?
- What is going on at the reconnection region?
- What triggers the reconnection process?
- Future perspectives: The X-Scale mission

So, how do we want to understand the reconnection process?

Cross-Scale Coupling (XSC)

Slow in time

Large in space

The coupling is dynamic! Unlikely to be described properly in terms of transport coefficient

XSC in reconnection

The magnetosphere is the field but our ultimate goal is understanding the Plasma Universe

- We are fascinated by dynamic large scale phenomena in the plasma Universe.
- The large scale dynamic phenomena have key regions that control the global dynamics.
- The key regions is quite often small and embedded in the global structure.
- The key physics in the key region is quite often at micro-scale.

The true understanding of the plasma Universe requires multi-scale to be observed simultaneously

The shape of the mission resolving the Cross-Scale Coupling

- In-situ observations in the magnetosphere
- High time resolution to resolve the key micro-physics in the key regions
- Formation flying observations at more than one scales and that simultaneously

More sophisticated instruments, more and more spacecraft Highly demanding!

Mission looking into the cross-scale coupling processes as the natural next step: European and Japanese magnetospheric communities coming to similar mission ideas

- Europe M³ based on Cluster-II experience
- Japan SCOPE

Key regions not only in the magnetospheric physics but also in the plasma Universe context post-MMS XSC explorer

More s/c surrounding the electron dynamics resolving core formation (like SCOPE) via ESA-ISAS collaboration should be <u>the natural choice</u>

X-Scale: LESS BULL, MORE MEAT.

ESA-ISAS collaboration framework enables us to form a network and to work even harder to design the mission.

The demanding mission in a smart way.

The "CrossScale" mission is guaranteed to become an epoch making mission in the context of "the plasma Universe" .