Long-duration balloon for in-situ exploration of the Venus atmosphere

 M.L. van den Berg¹, P. Falkner¹, A. Phipps², J.C. Underwood³, J. Moorhouse⁴, S. Kraft⁴, A. Peacock¹
 ¹Science Payload and Advanced Concepts Office, European Space Agency, ESTEC, Noordwijk, The Netherlands (MvdBerg@rssd.esa.int)
 ²Surrey Satellite Technology Limited, Guildford, United Kingdom

³Vorticity Limited, Chalgrove, United Kingdom ⁴Cosine Research B.V., Leiden, The Netherlands

Introduction

The European Space Agency together with industrial partners has studied a concept for low-cost in-situ exploration of the atmosphere of Venus: the Venus Entry Probe. The Venus Entry Probe is one of ESA's Technology Reference Studies (TRS). TRSs are model science-driven missions that are, although not part of the ESA science programme, able to provide focus to future technology requirements. This is accomplished through the study of several technologically demanding and scientifically meaningful mission concepts, which are strategically chosen to address diverse technological issues. The TRSs complement ESA's current mission specific development programme and allow the ESA science Directorate to strategically plan the development of technologies that will enable potential future scientific missions.

Venus has been targeted because in-situ exploration of the atmosphere of Venus is both scientifically interesting and technologically challenging.

Mission objectives

The key scientific objectives for a Venus atmospheric mission have been derived from a literature survey:

Origin and evolution of Venus atmosphere

✓ Comparative planetology (Venus vs Earth)

- Composition of lower atmosphere
 - ✓ Atmospheric chemistry
 - ✓ Runaway greenhouse effect
 - ✓ Tracking active volcanism

Aerosol analysis/exobiology

✓ Analysis of large (ø ~ 7 µm) cloud particles

Atmospheric dynamics/thermal balance

- ✓ Super-rotation
- ✓ Hadley cell circulation?
- ✓ Weather patterns in main cloud deck
- ✓ Polar vortices

Mission requirements

In order to address the key scientific questions, the mission should comply with the following:

• In-situ exploration between 40-57 km at all longitudes

Long-duration aerobot

Vertical profiles of atmospheric properties at multiple locations

✓ Atmospheric microprobes

· Global remote sensing of the Venus atmosphere

- ✓ All longitudes and latitudes, including polar vortices every 5 hours
 - Venus Polar Orbiter (VPO)
- $\checkmark\mbox{Also}$ concurrently with aerobot measurements to provide:
 - > global and regional context of in-situ measurements
 - \succ ground truth for remote sensing experiments

Mission concept

S/C Module	Measurements	Strawman payload	Requirements
Venus Polar Orbiter (VPO)	 Atmospheric composition Atmospheric dynamics Atmospheric structure 	 Microwave sounder Visible-NIR imaging spectrometer UV spectrometer IR radiometer 	Large FOV Resolution ~ 5 km Operational before aerobot deployment Polar orbit Orbital period < 5 hr Aerobot communications
Venus Elliptical Orbiter (VEO)			 Entry probe deployment after VPO has reached operational orbit Data relay station
Aerobot	 Isotopic ratios noble gases Minor gas constituents Aerosol analysis Pressure, temperature etc. Tracking and localization of microprobes 	Gas chromatograph/ Mass spectrometer with aerosol inlet Nephelometer IR radiometer Meteorological package Radar altimeter	- Long duration (different longitudes) - Microprobe deployment - Altitude 40 - 57 km (aerosols)
Atmospheric microprobes	 Pressure, temperature Light level (up and down) Wind velocity 	- P/L fully integrated with probe	- Operational down to 10 km or less

Mission analysis

Launch with Soyuz-Fregat 2 (1b) from Kourou

- ✓ Cost-efficient
- ✓ Highly reliable
- ✓ Mass capability:
 - ~ 1400 kg direct Venus escape

~ 2400 kg into Highly-Elliptical Earth Orbit (200 km x 70,000 km)

• Standard high thrust heliocentric interplanetary transfer

✓ Duration 120 – 160 days

✓ Flexible (1.6 years synodic period)

• Insertion into 250 km x 215,000 km (ΔV = 1.45 km/s) \checkmark Conservative launch date (2-11-2013)

Operational orbits:

	VPO	VEO
Periapse (km)	2000	250
Apoapse (km)	6000	215,000
Period (hr)	3.1	117 (4.9d)
Inclination	90°	90°
Total ΔV (km/s)	3.5	1.7

Spacecraft design

ltem	VPO (kg)	VEO (kg)	Remarks
Science payload	25.2		Highly Integrated P/L suite
Entry probe		91.1	
Communications	20.2	20.3	X/Ka band, 1 m antenna, science data > 50 kbps VPO comms duty cycle < 0.5% (VRS 33%)
AOCS	9.5	9.5	CMG, 2 star trackers, 3 sun sensors
ODBH	4.2	4.2	Leon processor
Structure & Harness	82.7	84.1	
Power	18.6	7.1	
Thermal	21.4	16.7	
Propulsion	63.7	42.3	Bipropellant MMH/NTO, lsp = 325 / 285, 500 N
S/C dry mass	294.5	330.3	Incl. P/L and entry probe
20% system margin	49.1 55.0		
Propellant 594.2		206.2	
S/C wet mass (incl. system margin)	888.7	536.5	
Launch adapter	45.0		Ref. Venus Express
TOTAL LAUNCH MASS (incl. system margin)	1470.2		
Launch vehicle capability	1491		Incl. launch window margin Conservative launch date (ΔV)

Strawman remote sensing payload suite

Instrument	Mass (kg)	Power (W)	Data rate (kbps)
UV spectrometer	4.5	4	7
UV-VIS-near IR camera	1	2.5	2
VIS-near IR mapping spectrometer	4	16	20
Imaging Fourier transform spectrometer	4	3	30
Submm wave spectrometer	6	31	5
Central power supply	1	8.5	
CPU	0.5	2	
20% margin	4.2	13	
TOTAL	25.2	80 (average 60)	64

Submm-wave spectrometer (ESA CDF study 2004)

Venus entry vehicle

Atmospheric entry, descent and deployment

- Release from VEO orbit (250 x 215,000 km)
 - \checkmark Balloon deployed after remote sensing investigations have started
 - ✓ Entry velocity ~ 10 km/s
- Spacecraft provides ΔV/orientation ✓ No probe GNC system
- 45° sphere-cone aeroshell
 - ✓ Aerodynamically stable
 - ✓ Low drag (quick entry)
 - ✓ Good packaging shape
- Steep entry angle (40°)
 - ✓ Minimize heat load
 - ✓ High peak heat flux
 - ✓ High peak g-load

Gas storage tank

Entry vehicle mass budget

ltem	Mass (kg)	Remarks
Gondola	22.7	
Balloon	9.1	Incl. gas replenishment
Gas storage system	16.8	
Parachute	4.3	3.6 m Disk-Gap-Band parachute
Inner structure	4.1	
Back cover	8.0	3 mm Norcoat Liege ablator
Front shield	26.0	7 mm carbon-phenolic ablator
TOTAL MASS	91	

Science payloa

Overall

gondola

shape

Batteries

Microprobe

comms and localization

Power electronics

Ø 524 n

Transponder

Science payload

3 sets of 5 microprobes

Duty cycle (%)

(day)

27

73

10

10

23

13

20 N/A

0.05

3 100

_

2.5

Gondola instruments

Margin (20%-30%)

TOTAL

d				-
u	Instrument	Mass (kg)	Power (W)	Data rate (kbps)
	Gas chromatograph/Mass spectrometer with aerosol inlet	1.1	6-10	1.6
	Gas chromatograph/Mass spectrometer (sleep mode)		1	
	Solar and IR flux radiometers	0.3	2.3	0.3
	Meteorological package	0.07	0.6	0.1
	Inertial package	0.06	0.6	0.1
	Radar altimeter	1.0	3.0	0.2
	Polarization nephelometer	0.2	1.7	0.2
	15 Microprobes (90 g each)	1.35	(0.25)	-
	Microprobe deployment	0.3	25	-
	Microprobe localization and communication	1.1	25	(0.1)
	DPU	0.2	0.7	
	Structure	03	_	_

1.9

7.92

1.0 6.07

(average during day)

Aerobot

- Baseline: Hydrogen super-pressure balloon
- Altitude: ~55 km (30° C, 0.5 bar)
- Duration: 15 22 days (2 3 circumnavigations)
 - Ballast dropping
 - > Ammonia gas replenishment system

Gondola design

ltem	Mass (kg)	Remarks
Science instruments	7.92	Highly Integrated P/L suite and microprobe system
Communications	1.64	X-band ranging transponder, patch substrate antenna (science data 2.5kbps)
OBDH	0.84	FPGA sequencer, CPU part of science instruments
Structure & harness	6.86	Ti-SiC
Power	5.40	Primary batteries (LiSoCl ₂) + Triple-junction α -Si solar cells
TOTAL	22.7	

Atmospheric entry system

- Test and qualification of carbon-phenolic ablator

Aerobot technology

- Balloon envelope (low-mass, low leakage, acid resistant)

Science instruments

- Low mass GCMS
- Aerosol inlet for GCMS
- Atmospheric microprobes (under development by Qinetiq/Oxford University)

Planetary Exploration Studies Section Science Payload & Advanced Concepts Office

- o Localization and communication
- o Full integration

Deep space communications

20

- Miniaturized deep space (ranging) transponders

