
SMART-1 mission, technologies and science :

with Solar power to the Moon

Bernard H. FOING*, Giuseppe Racca** & SMART-1 Team *SMART-1 Project Scientist & Chief Scientist, RSSD ** SMART-1 Project Manager ESA Science Directorate

What European scientists want to do.

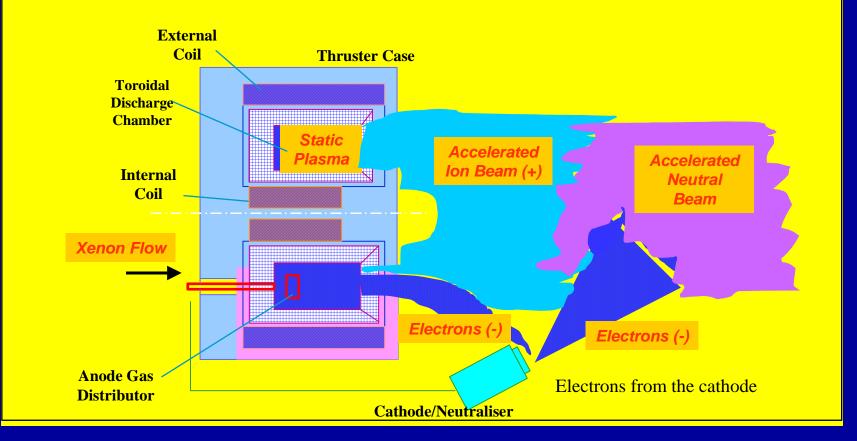
SMART-1 (http://sci.esa.int/smart-1/)

- ESA SMART Programme: Small Missions for Advanced Research in Technology
 - Spacecraft & payload technology demonstration for future cornerstone missions
 - Management: faster, smarter, better, (harder)
 - Early opportunity for science



SMART-1 (http://sci.esa.int/smart-1/)

• ESA SMART Programme: Small Missions for Advanced Research in Technology


SMART-1 Solar Electric Propulsion to the Moon

- Test for Deep Space Propulsion
- Mission approved and payload selected 99
- SMART-1 cost 80 + 30 MEuro
- 19 kg payload (delivered August 02)
- 370 kg spacecraft (tested, mounted)
- launch Ariane 5 due 27 Sept, 23UT, Kourou

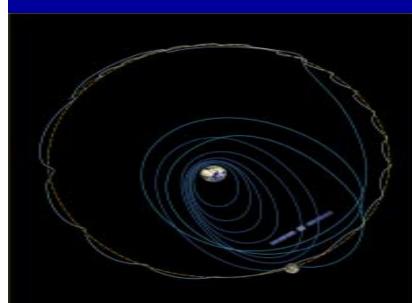
Stationary Plasma Thruster

The ion engine:

- SNECMA SEP (F) (Stationary Plasma Thruster SPT-100, PPS-1350)
- High specific impulse (~1500 s)
- low thrust (~70 mN = 7 grams), low power consumption (~20 W/mN)

The ion engine:

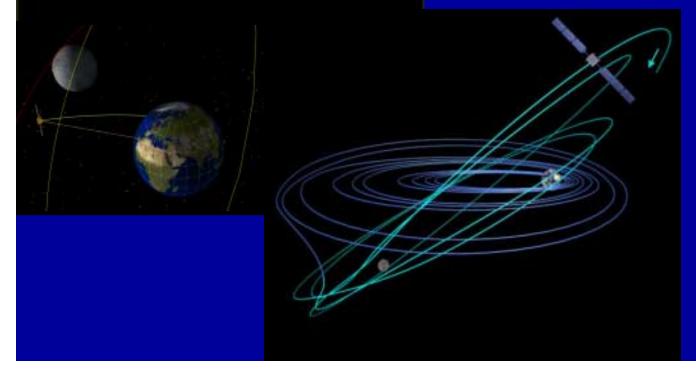
- SNECMA -SEP (F) (Stationary Plasma Thruster SPT-100, PPS-1350)
- High specific impulse (~1500 s)
- low thrust (~70 mN = 7 grams) and low power consumption (~20 W/mN)

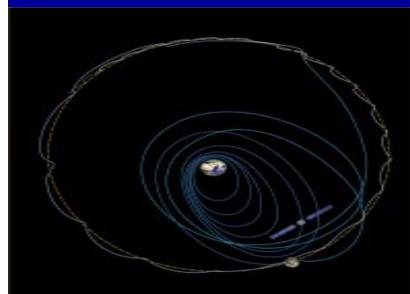

Designing and developing the vehicle

- Dedicated Spacecraft and Electric Propusion design
- Spacecraft 370 kg, Fuel 84 kg Xenon, Payload mass 19 kg,
- Modular S/C concept, advanced on-board technologies, CAN bus
- Li-C batteries, Multiple-junction Solar Arrays
- New Guidance Navigation / flight dynamics approach.

The ion engine:

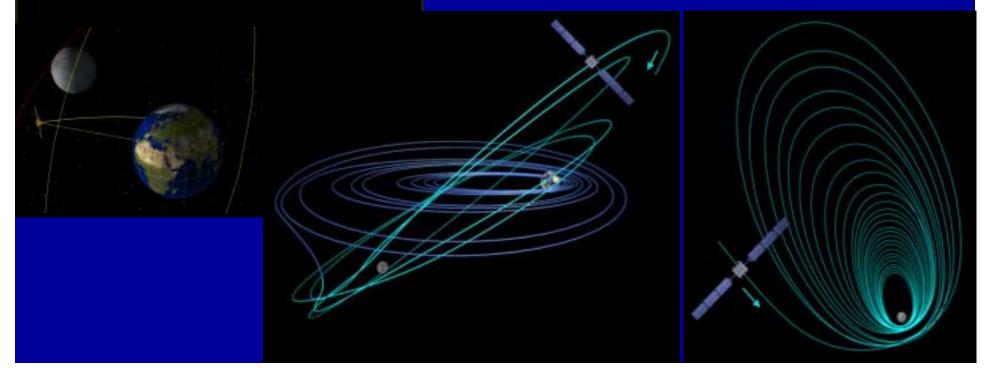
- SNECMA -SEP (F) (Stationary Plasma Thruster SPT-100, PPS-1350)
- High specific impulse (~1500 s)
- low thrust (~70 mN = 7 grams) and low power consumption (~20 W/mN)
 Designing and developing the vehicle
 - Dedicated Spacecraft and Electric Propusion design
 - Spacecraft 370 kg, Fuel 84 kg Xenon, Payload mass 19 kg,
 - Modular S/C concept, advanced on-board technologies, CAN bus
 - Li-C batteries, Multiple-junction Solar Arrays
 - Guidance Navigation / flight dynamics approach.
- Learning to drive the Solar Powered vehicle
 - Earth-Moon transfer from GTO: 14-18 months (SPT only/coast arcs)
 - Effects of Solar pannels degradation in radiation belts
 - Use of lunar resonance gravity assist
 - Flexibility and optimisation of navigation
 - payload diagnostics of engine capabilities and environment




Propulsion to the Moon

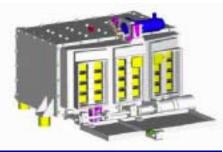
 To be launched 27 September 2003 23h UT as Auxiliary passenger on Ariane 5 into Geostationary Transfer Orbit with INSAT3 E and e-Bird

(a bargain hitchhike to space)


 Spiral out cruise (15-18 month), SPT/coast arcs, lunar resonance swingbys & capture

Propulsion to the Moon

- To be launched 27 sept 2003 as Auxiliary passenger on Ariane 5 into Geostationary Transfer Orbit (a bargain hitchhike to space)
- Spiral out cruise (15-18 month), SPT/coast arcs, lunar resonance swingbys & capture, spiral in
- lunar science orbit (300-1000 km perilune -10000 km apolune, 6 month + extension)




7 experiments and 10 investigations

		Mass	Power	PI Investigator
		(kg)	(W)	
EPDP	Electric Propulsion Diagnostic Package	2.4	18	G. Noci (I)
•SPEDE	Spacecraft Potential Electron and Dust Exp.	0.8	1.8	A. Malkki (SF)
•KATE	Ka-Band TT&C Experiment	6.2	2	R. Birkl (D)
•RSIS	Radio-Science Investigations for SMART-1	(KATE/AMIE)		L. less (I)
•D-CIXS	Demo Compact Imaging X-ray Spectrometer	5.2	18	M. Grande (UK)
•XSM	X-ray Solar Monitoring	(with D-CIXS)		J. Huovelin (SF)
•SIR	SMART-1 Infrared Spectrometer	2.3	4	H.U. Keller (D)
•AMIE	Advanced Moon micro-Imager Experiment	2.1	9	J.L. Josset (CH)
Laser	Experimental Deep-space Laser link	(using A	MIE)	Z. Sodnik (ESA)
OBAN	On-Board Autonomous Navigation Exp.	(using A	MIE)	F. Ankersen (ESA)

Instrument Technology

- D-CIXS (Compact Imaging X-ray Spectrometer)
 - Swept charge CCD, advanced micro structure collimator
- SIR (IR Spectrometer)
 - Monolithic quartz commercial grating spectrometer
 - AMIE (High Resolution micro- Camera)
 - micro-camera, 3D electronics+ integrated Data Processor
 - Multicolour imaging, lightweight high resolution optics
 - Laser link with ESA Optical Ground Station in Tenerife
 - On Board Autonomous Navigation experiment
- SPEDE Spacecraft Potential Electron Dust Experiment
- EPDP Electric Propulsion Diagnostics Package
- KATE Deep Space X- Ka Communications &
- RSIS radio science

Smart-1 is not only

Getting to the Moon by solar electric propulsion
 Testing challenging miniaturised payload

Smart-1 is also

 Making new exciting science on the Moon
 Working in international collaboration with other Lunar missions

7 experiments and 10 investigations

1. Testing new techniques on the way to the Moon

EPDP and SPEDE

KATE and RSIS

Laser Link

OBAN

- 2. Performing cruise science D-CIXS, XSM & AMIE
- 3. Observing the Moon

AMIE

SIR

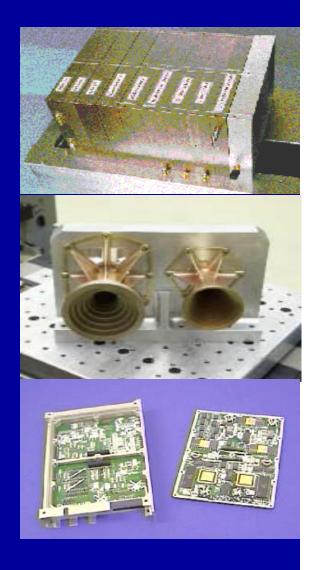
D-CIXS & XSM

SPEDE & RSIS

1. Testing new techniques on the way to the Moon

EPDP and SPEDE will monitor:

- how the ion engine performs
- what are the possible side effects on spacecraft and instruments
- how the spacecraft interacts with natural electromagnetic phenomena in the space around it


1. Testing new techniques on the way to the Moon

KATE will:

 demonstrate the next generation of high bandwidth radio links between the Earth and far-flung spacecraft (deep space communication)

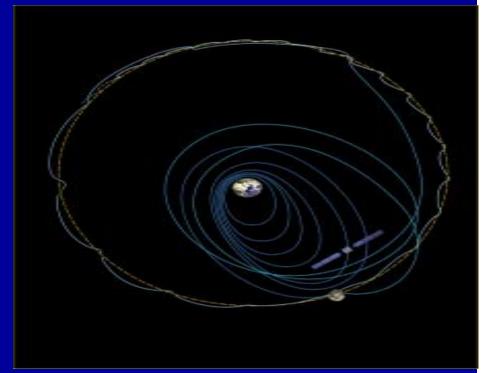
RSIS will:

- determine what is the precise thrust delivered by the ion engine

1. Testing new techniques on the way to the Moon

The Laser Link experiment will:

 test laser beaming from Earth to a camera on a fast moving spacecraft for communication purposes



1. Testing new techniques on the way to the Moon

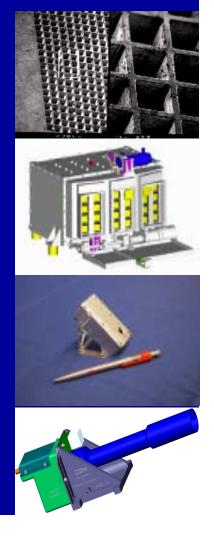
OBAN will:

 evaluate a computer technique for on-board autonomous navigation

> using images of the Moon, Earth, asteroids taken with AMIE referred to the stars seen by the star tracker

2. Performing cruise scienceto test in space the instruments performance

D-CIXS will:


- monitor the X-ray variability of the Earth magnetosphere and bright X-ray sources

XSM will:

 monitor continuously the solar variation in X-ray due to active regions of the Sun and solar flares

AMIE will:

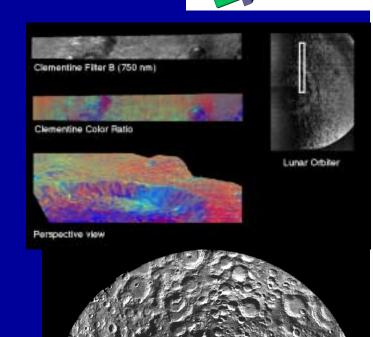
 deliver images of the Earth and the Moon, for calibration but also for public and education projects

3. Observing the Moon. Why?

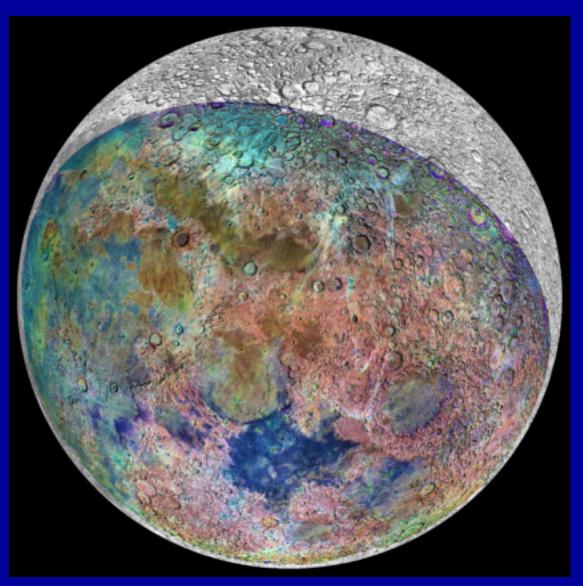
After Apollo/Luna (35 years ago) and more recent lunar missions the knowledge of the Moon is still surprisingly incomplete...

We still want to know about:

 How the Earth-Moon system and rocky planets formed and evolved (geochemistry and giant bombardment)


- Geophysical processes (volcanism, tectonics, cratering, erosion, deposition of ice and volatiles...)

- How to prepare for future lunar and planetary exploration (resources and landing sites)

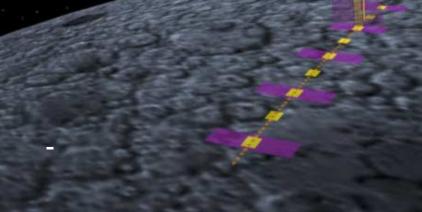

3. Observing the Moon

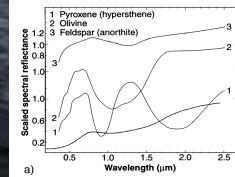
AMIE, the mini camera, will make multicolour imaging of the Moon for:

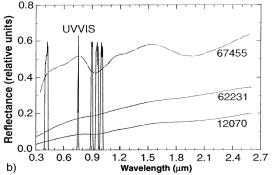
- High resolution geology
- Stereo, multi-angle imaging
- Survey landing sites for sample return
- Repeated deep imaging of south pole
- Mapping 'eternal' light and shadow
- Search for potential water ice traps
- Potential for lunar bases, power, resources
- Preparation for future lunar exploration

The colours of the Moon

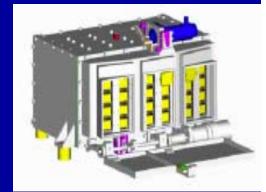
Galileo lunar fly-by

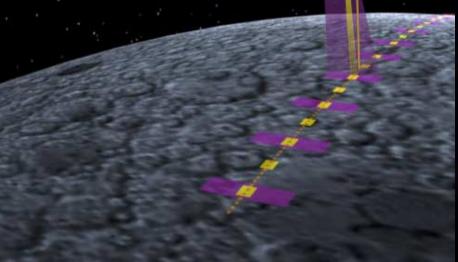

3. Observing the Moon


- The SIR spectrometer will look at the "invisible" Moon in the infrared:
- to chart the Moon's minerals


- to find the signature of volcanism and impacts

- to search for the fingerprints of waterice by peeking into dark craters




3. Observing the Moon

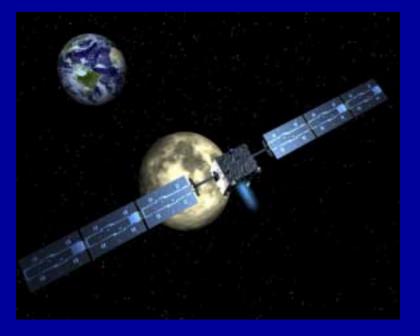

The D-CIXS spectrometer will look at the "invisible" Moon in the X-ray:

- to map chemical elements on the Moon (Mg, Si, Al, Fe)

- to get absolute chemical abundances thanks to XSM

Far side

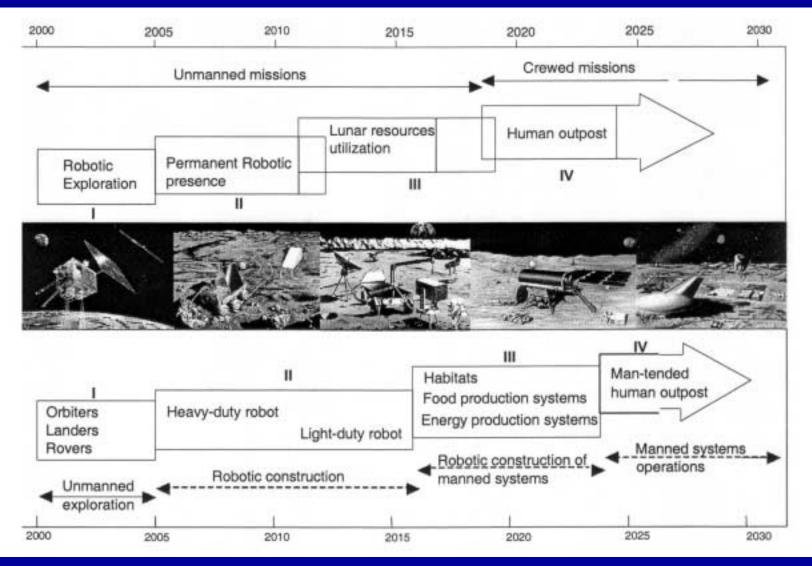
...this will tell us more about the origin of the Moon (daughter of the Earth?), and its evolution


3. Observing the Moon

SPEDE will:

- observe how the Moon leaves a wake in the solar wind

RSIS will:


- use radio waves positioning and AMIE images to demonstrate a new way of gauging the libration of planets and their moons

International lunar exploration

•	Muses-A/Hiten (ISAS)	1990
	 Circumlunar navigation 	
•	Clementine (US, BMDO)	1994
	 Multi-band Imaging, technology demonstration 	
•	Lunar Prospector (US, NASA Discovery)	1998
	 Neutron, gamma ray low resolution mapping 	
•	SMART-1 (ESA Technology Mission)	2003
	 Instrument technology, geochemistry, high resolution 	
•	Lunar A (J, ISAS Science)	2004
	 2 Penetrators with seismometers + equator cameras 	
•	SELENE (J, ISAS/NASDA)	2005
	 Ambitious orbiter instruments for science 	
•	Chinese lunar orbiter,	2007
•	Chandrayan-1 (ISRO Lunar Orbiter, launch PSLV, India)	2008
•	South Pole Aitken Basin Sample Return	2009
	 NASA New Frontiers Mission 	

International (ILEWG) phased approach for lunar exploration

SMART-1 Summary

- SMART-1 Technology Mission:
- Solar Electric Propulsion to the Moon
- A challenging Miniaturised Payload:
 - Plasmas (EPDP, SPEDE),
 - Communications (KATE/RSIS)
 - AMIE cam, infrared SIR, X-ray D-CIXS,

United States (US)

United Kingdom (UK)

The Netherlands (NL)

Belgium (8)

France (F)

Spain (E)

eral Dynamics: Hydrazine Propulsion System co Space Systems Inc: Reaction wheels ommunications: Electrical Ground Support Equipment

herford Appleton Laboratory: Compact imaging X-ray spectrometer (D-CDX)

Spacebel S.A: On-board software detailed design Alcatel ETCA SA: Electric propulsion power process

Fokker Space: Solar Arrays TNO/TPD: Sun acquisition sensors

SAFT Division Defence et Espace: Ba Snecma Moteurs: Solar Array Mecha

Alcatel Espacio: S-band transponde CRISA: Battery management electro

Electric Propu ATERMES: Electric propu

- Technology and science objectives
- Science performances, data
- SMART-1 operations
- Coordination with other missions
- Preparing future exploration,
- Engaging the public and youth
- Europe to the Moon and beyond!

Finland (FIN)

Finish Meteorological Institute: Space asma electron and dust detection (SPEDE)

Sweden (5)

Swedish Space Corporation: Prime Contractor Omforp Internents AB: Prover Control and Distribution Unit SALB Ericsson Space AB: Flight Module Assembly Integration and Posting, Antonnee, Remote Ferminal Unit, Ebetromognetic Compatibility, Thermal Subsystem

Denmark (DK)

Terma A/S: On-board Indepedent Software Validation DTU Technical University of Denmark: Star tracker

> Germany (D) ______ Astrium GmbH: Deep space X/Ka-band (KaTE) Aeronomies: Near Infrared Spectrometer (SIR)

Switzerland (CH)

APCO Technologies SA: Structure and Mechanical Ground Support Equipment Contraves Space A6: Electric propersion mechanism CSEM: Asteroid-moon micro imager (AMIE)

Italy (I)

LABEN SpA: Electric Propulsion Diagnostic (EPDP) RSIS: Radio science investigation (RSIS)