LPSC Special session SMART-1 UPDATE AND IMPACT CAMPAIGN

Marina Plaza Ball room Thursday 12:00-13:15

• SMART-1 status and planned operations (B.Foing & STOC), Orbit predictions

- coordinated observations with SMART-1 in March- August
- - targets imaging, radiometric calibrations, spectrometric observations
- - merging of SMART-1 and ground based data
- - ground based detection of SMART-1, and laser link experiment, radio detection and VLBI
- - opportunities for outreach and education, adopt your crater, amateur lunar images competition
- Impact predictions (flash, ejecta, exospheric effects, crater) and challenges
 - SMART-1 observations of previous impact sites, Prior observations of site of impact
 - straylight rehearsal, support of impact observations
- Impact observations

•

•

•

0

•

- thermal infrared imaging of thermal flash, visible/infrared imaging of ejected clouds
- spectroscopy, hydrazine flame detection
- VLBI observations, accurate coordinates of impact crater
- post-characterisation of ejecta, exospheric effects
- - follow up search for SMART-1 crater (in coordination with future lunar orbiters)
- Facilities and observing requests, Moon visibility conditions
- - ESO VLT, ESO La Silla, Galileo National Telescope (I), Tenerife OGS and other
- - European continental observatories, US/ Hawaii observatories, Other int'l observatories
- Discussion, Share of tasks, Preparation/consolidation of observing proposals

EUROPE TO THE MOON: SMART-1 STATUS

 Bernard H. FOING, SMART-1 Project Scientist & Chief Scientist, ESA SCI-S & J.L. Josset , M. Grande, J. Huovelin, U. Keller, A. Nathues, A. Malkki, P. McMannamon, L.Iess & SMART-1 Science & Technology Working Team STWT
 M. Almeida, D. Frew, D. Koschny, R. Lumb, J. Volp, J. Zender, RSSD & STOC
 G. Racca & SMART-1 Project ESTEC , G. Schwehm, O. Camino-Ramos & S1 Operations team ESOC, <u>Bernard.Foing@esa.int</u>, <u>http://sci.esa.int/smart-1/</u>

SMART-1 project team

Science Technology Working Team & ESOC Flight Control Team

SMART-1 Mission SMART-1 web page (http://sci.esa.int/smart-1/)

- ESA SMART Programme: Small Missions for Advanced Research in Technology
 - Spacecraft & payload technology demonstration for future cornerstone missions
 - Management: faster, smarter, better (& harder)
 - Early opportunity for science


SMART-1 Solar Electric Propulsion to the Moon

- Test for Bepi Colombo/Solar Orbiter
- Mission approved and payload selected 99
- 19 kg payload (delivered August 02)
- 370 kg spacecraft

- launched Ariane 5 on 27 Sept 03, Kourou

Europe to the Moon

United States (US)

General Dynamics: Hydrazine Propulsion System Ithaco Space Systems Inc: Reaction wheels L3 Communications: Electrical Ground Support Equipment TECSTAR: Solar Cells

Finland (FIN)

Finish Meteorological Institute: Space plasma electron and dust detection (SPEDE)

Sweden (S)

Swedish Space Corporation: Prime Contractor Omnisys Instruments AB: Power Control and Distribution Unit SAAB Ericeson Space AB: Flight Module Assembly Integration and Testing, Antennae, Remote Terminal Unit, Bectromognetic Compatibility, Thermal Subsystem

Denmark (DK)

Terma A/S: On-board Indepedent Software Validation DTU Technical University of Denmark: Star tracker

Germany (D)

Astrium GmbH: Deep space X/Ka-band (KaTE) MPI Aeronomies: Near Infrared Spectrometer (SIR)

Switzerland (CH)

APCO Technologies SA: Structure and Mechanical Ground Support Equipment Contraves Space AG: Electric propulsion mechanism CSEM: Asteroid-moon micro imager (AMIE)

Italy (I)

LABEN SpA: Electric Propulsion Diagnostic (EPDP) RSIS: Radio science investigation (RSIS)

United Kingdom (UK)

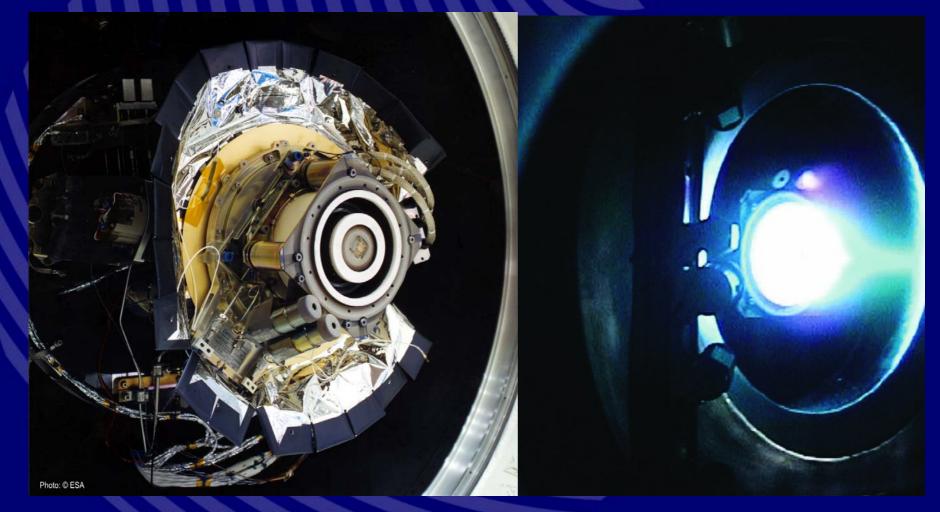
Rutherford Appleton Laboratory: Compact imaging X-ray spectrometer (D-CDS)

The Netherlands (NL)

Fokker Space: Solar Arrays TNO/TPD: Son acquisition sensors

Belgium (8)

Spacebel S.A: On-board software detailed design Alcatel ETCA SA: Electric propulsion power processing

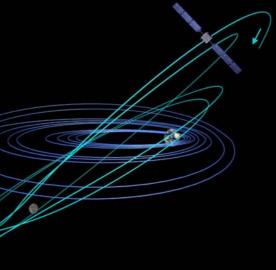

France (F)

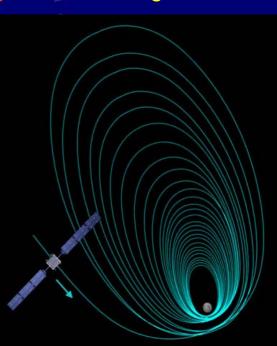
SAFT Division Defence et Espace: Batteries Snecma Moteurs: Solar Array Mechanism, Electric Propulsion System (EPS) ATERMES: Electric propulsion pressure regulation Arianespace: Launcher (Ariane 5)

Spain (E)


Alcatel Espacio: S-band transponder CRISA: Battery management electronics

Electric Primary Propulsion: 7 g thrust, 60 liters Xenon fuel to the Moon





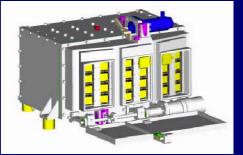
Solar Electric Propulsion to the Moon

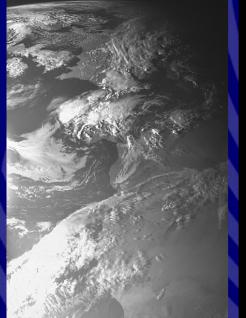
- Launched 27 Sept 2003 as Auxiliary passenger on Ariane 5 into Geostationary Transfer Orbit
 Spiral out cruise (13.5 month):
- lunar capture 15 November 2004, spiral down
- arrival 15 March 05 science(450 -2900 km): commissioned spacecraft/instruments at Moon, nominal science mission March-July 05
 reboosting 2 aug-15 Sept 05 to increase orbit lifetime for extension phase until Aug 2006

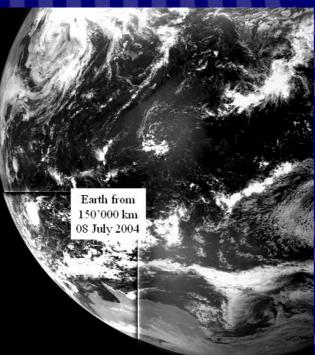
Mini-Instruments European Technologies (19 kg): eyes, nose and ears

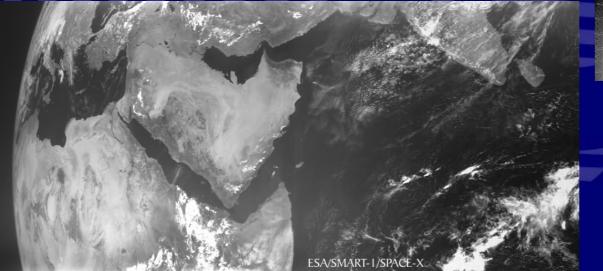
- D-CIXS Spectrometer (UK, 5.2 kg)
- + XSM solar X-ray Monitor (SF)
- SIR Infrared Spectrometer (D, 2.3 kg)
- AMIE micro-Camera (CH, 2.1 kg)

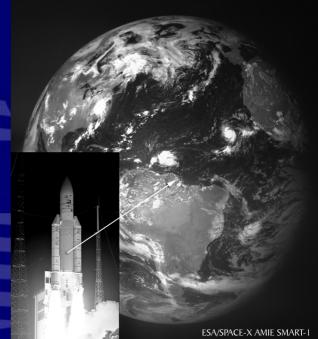
- SPEDE Spacecraft Potential Electron Dust (SF, 0.8 kg) EPDP Electric Propulsion Diagnostics Package (I, 2.4 kg)
- KATE Deep Space Communications (D/ESA, 6.2 kg)
- RSIS radio science (I)



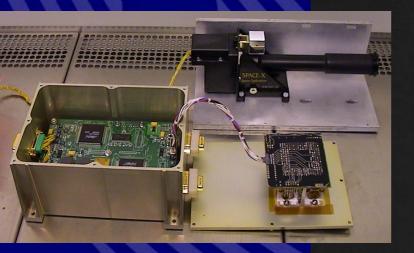


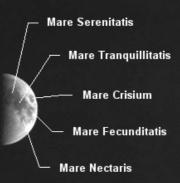


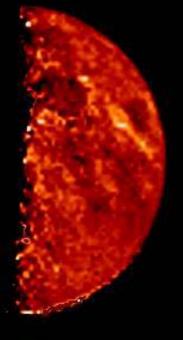

SMART-1 views planet Earth


Europe

ESA/SMART-1/SPACE-X

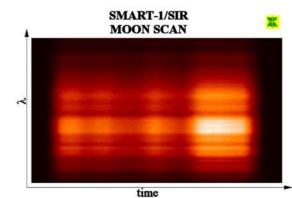




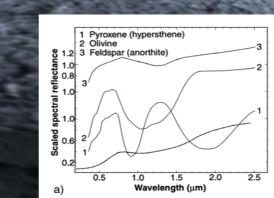

1 year launch birthday

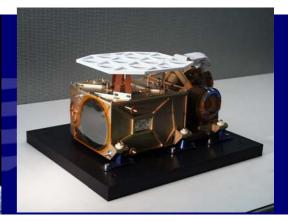
AMIE multicolour microcamera PI:SPACE-X, CH; Co-I's I,F,CH, Fin, NL, ESA

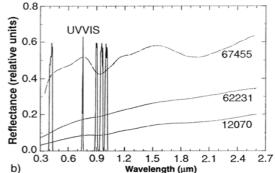
- CCD cam & micro-electronics packed in 3-D
- 4 colour filters (red to near infrared)
- Mass 2.1 kg , optics 400 g , 5.3° view
- Support laser-link, On Board Autonomy



1st AMIE image of Moon from 300,000 km: <u>White, red</u> (bottom) and near infrared (top)


Smart-1/SIR & the infrared Moon: minerals and ice

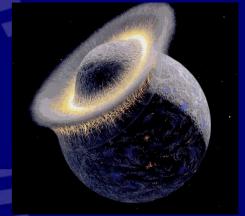

1st moon observations



to chart the Moon's minerals
to find the signature of volcanism and impacts
to search for the fingerprints of water- ice by peeking into dark craters

The SIR spectrometer 0.9-2.4 microns:

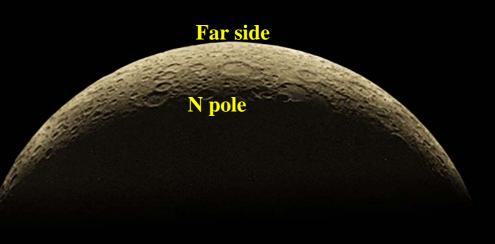
NEXT: SMART_1 D-CIXS X-ray Moon: tracing violent Earth-Moon beginnings


The D-CIXS spectrometer looks at the "invisible" Moon in the X-ray:

-to map chemical elements on the Moon

(Mg, Si, Al, Fe),

- to get absolute chemical abundances using XSM solar monitor



Near side

Towards Moon capture

Near side

28 Oct from 600,000 km

1st European view of North pole and far side (12 Nov from 60,000 km), second in space exploration history

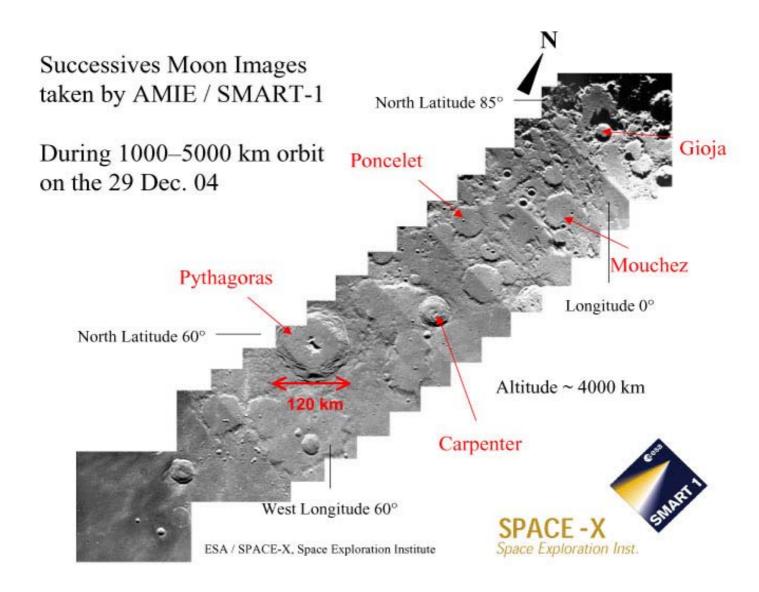

First Moon close-up images

By AMIE/SMART-1

AMIE Instrument


Clear Filter

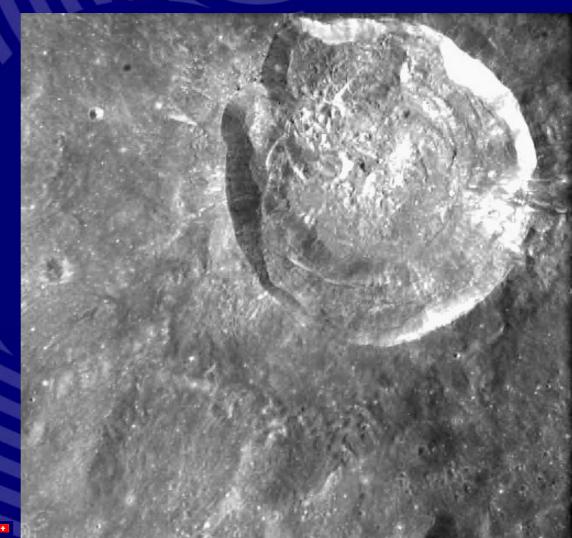
(~ 75° Lat. North)


Brianchon

Pascal

Area covered by 3 Filters

Mosaic of images along SMART-1 from orbit 1000-4500 km

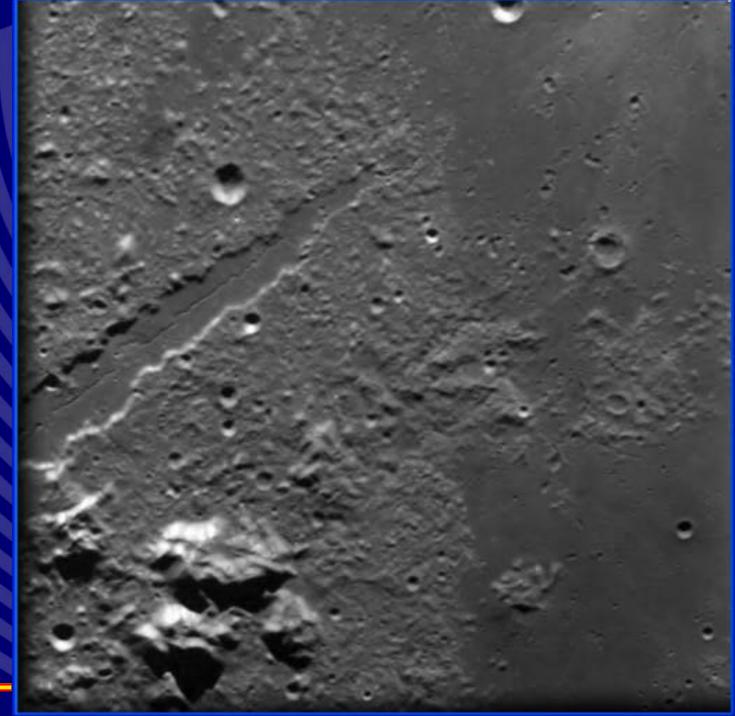

SMART-1: Science and Exploration Themes (B.H. Foing et al, continued)

A) TECHNOLOGY AND DEMONSTRATION (spacecraft and instruments work)
 B) CRUISE PHASE SCIENCE (analysis and interpretation)

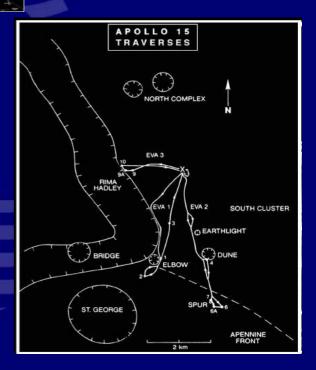
C) HOW DO EARTH-LIKE PLANETS WORK? GEOPHYSICS: volcanism, tectonics, cratering, erosion, space weather, ices D) HOW DO ROCKY PLANETS FORM AND EVOLVE? **GEOCHEMISTRY:** chemical composition, Earth-Moon origin, Moon evolution accretion and collisions, giant bombardment **E) PREPARING FUTURE LUNAR/PLANETARY EXPLORATION** LUNAR RESOURCES SURVEY (minerals, volatiles, illumination) HIGH RESOLUTION MAPS for future landing sites and outposts SUPPORT TO FUTURE EXPLORATION and coordination with other missions F) PUBLIC OUTREACH AND EDUCATION: INSPIRING PUBLIC AND YOUTH

Impact cratering processes

- Glushko crater, a young impact caught after the act
- Fresh 43 km crater: wall, fresh rims, central peak and collapse, ejecta



ESA / SPACE-X, Space Exploration Institute

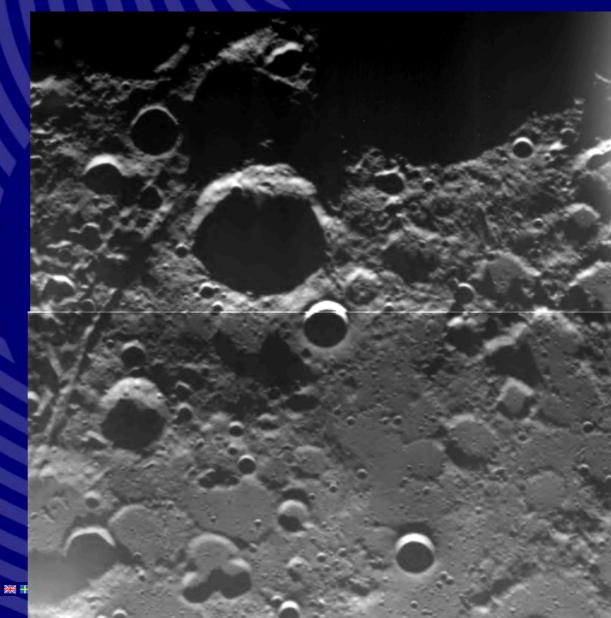

Cassini Crater flooded by lava in Imbrium mare

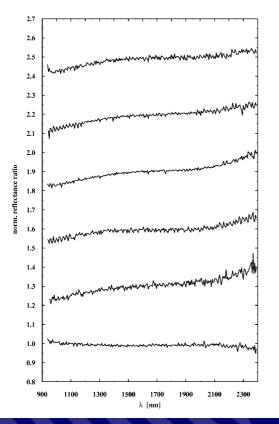
-outer rim -small fresh crater exhuming deeper basement or debris? -volcanic center with rilles? CESA

Lunar Alps ridge - flooding - volcanic channel and late rille

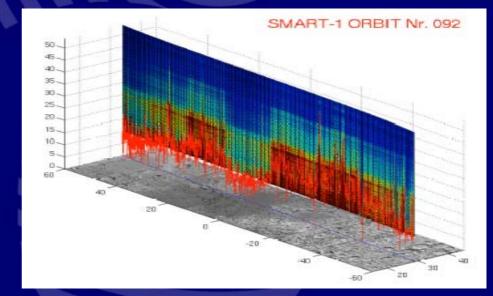
SMART-1 view of Hadley Rille near Apollo 15 landing site

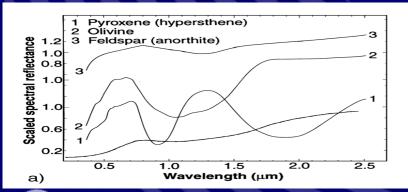
ESA / SPACE-X, Space Exploration Institute

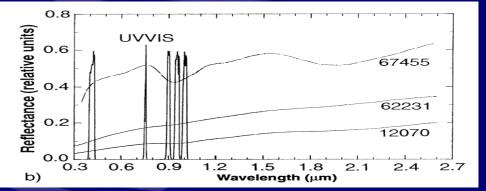

100 km field

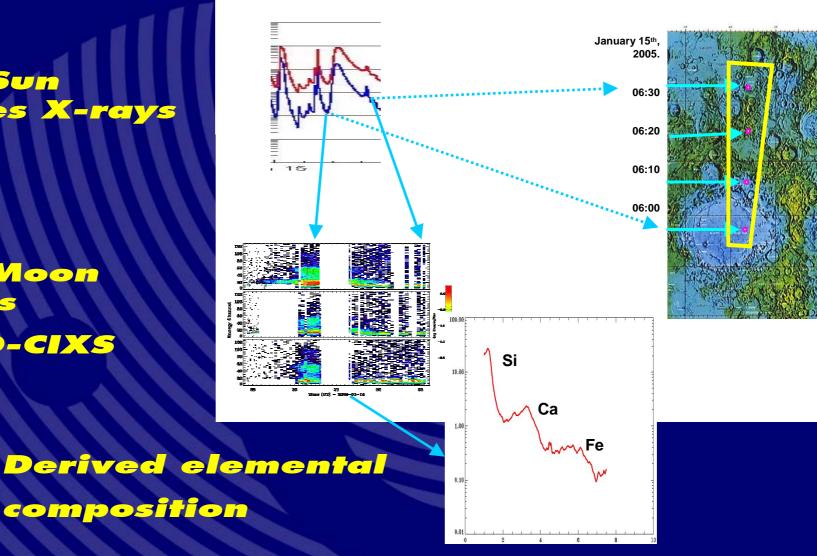

North polar highlands on West near side: fron saturated ancient cratered to flooded terrains tectonic faults, feeding dykes/pit chains?

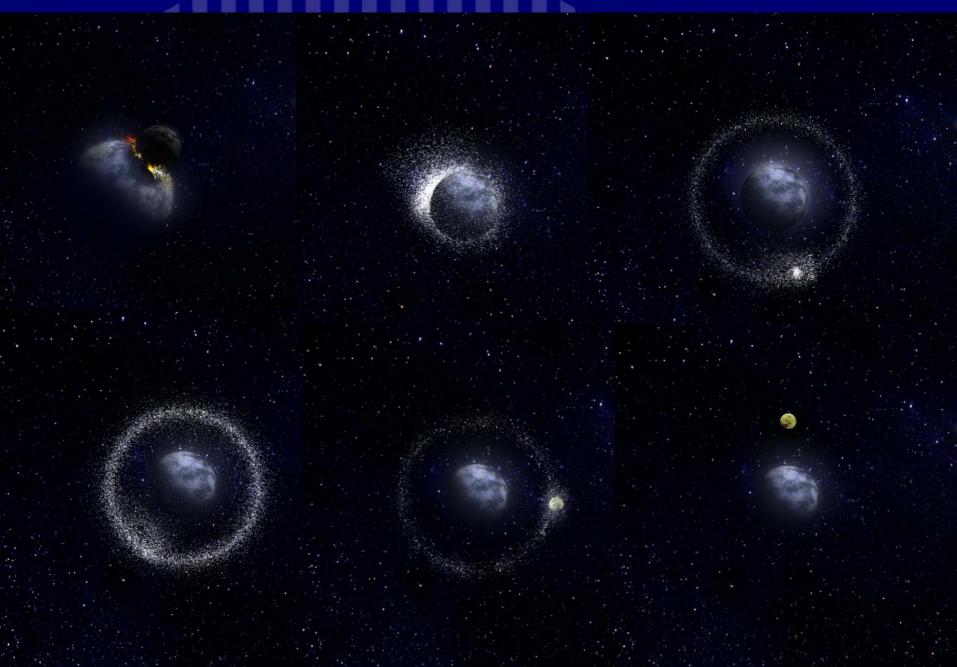
200 km field Filtered images


cesa








The Sun shines X-rays

The Moon glows -> D-CIXS

1st detection of Calcium and **Magnesium from orbit (D-CIXS)**

The Moon, daughter of the Earth , 4.5 billion years ago

SMART-1 results presentations

 LPSC Moon missions posters Thursday - Foing et al, SMART-1 highlights - Kellett, Grande et al, DCIXS results – Josset et al, AMIE camera, - Cerroni et al Colour imaging • EGU Vienna April 06: session lunar science and SMART-1 results

5 months to SMART-1 impact

- S/C pushbroom AMIE colour (oct- 17 dec & april-may)
- Extend DCIXS regional/global cover
- Extend SIR/AMIE coverage
- Extend equator/north cover
- Fill gaps in survey
- Stereo, Multi-angle, tracking
- Off nadir Central peaks of craters SIR
- Polar peaks of eternal light
- Search for ice in permanent dark areas
- Support international collaborations
- Mapping potential future landing sites
- Operations at perilune < 300 km after 10 June
- Preparation for end of mission impact 1-2 Sept 06
 Cesa

N. Pole Smart-1

SMART-1 & Upcoming lunar missions

- Science/exploration:
 - **Earth-Moon formation & evolution**
 - water ice and resources
 - conditions for future sciences & life
 - sites for future robots/humans

SMART-1 precursor for future missions

 2007 Chinese Chang'e 1

 2007 JAXA Selene

 2007 Indian ISRO Chandrayaan-1

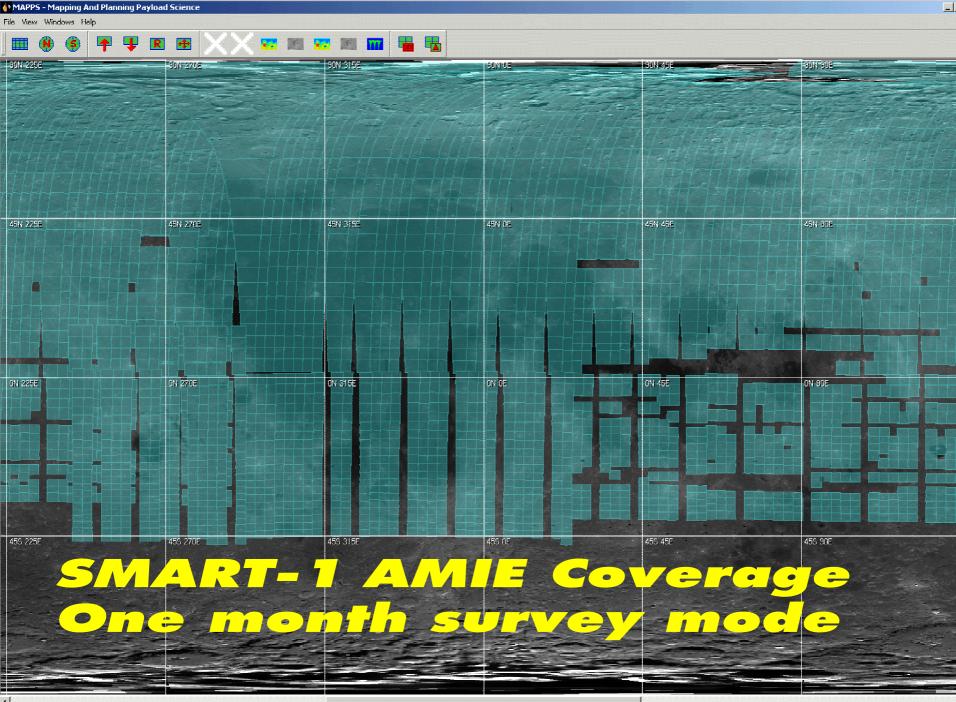
 2008 US Lunar Reconnaissance Orbiter

 TBD JAXA Lunar A penetrator

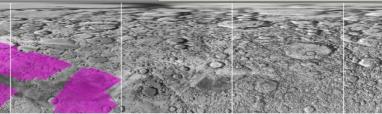
 2010-2012 landers, rovers, technology testbeds

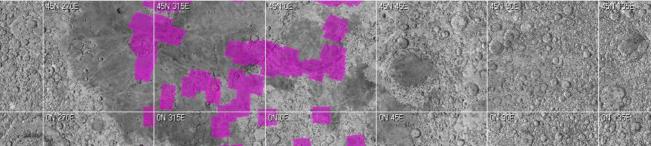
 (US, China, Japan, India, Europe)

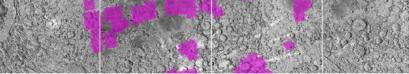
 Preparation for human lunar missions

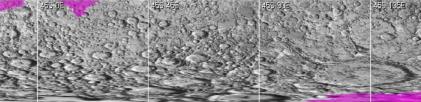


HANDRAYAAN-

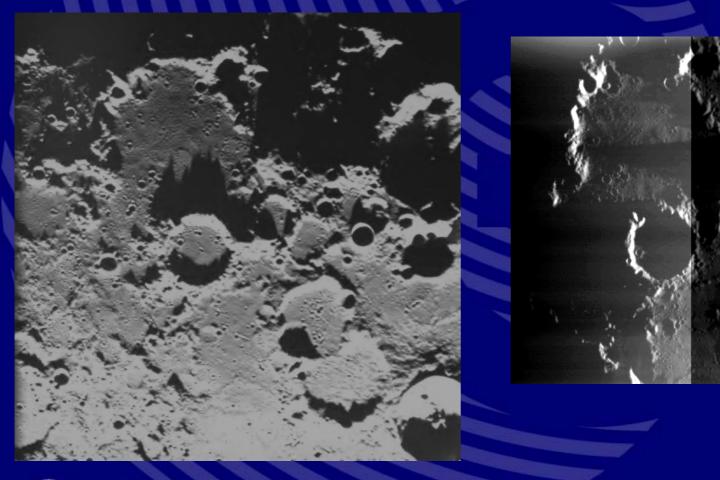

SMART-1 AMIE Coverage Week 2, January 2006


MAPPS - Mapping And Planning Payload Science


File View Windows Help



_ 8 ×

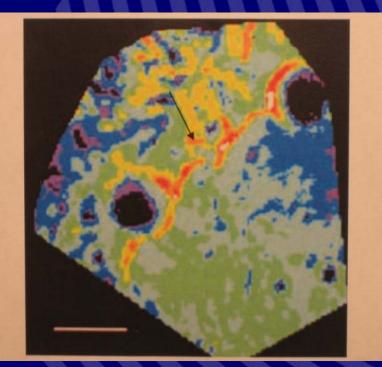


North polar winter shadows variations: near side around Byrd crater

29 Dec

19 Jan

SMART-1 looks at peaks of eternal light


200 km

Far side

eternal peaks of light \rightarrow North pole \rightarrow

Near side

North pole peaks of light

Summer average illumination Clementine

Winter image SMART-1

Coordinated observations with SMART-1

- SMART-1 status and planned operations (B.Foing & STOC), Orbit predictions
- coordinated observations with SMART-1 in March- August
- targets imaging, radiometric calibrations, spectrometric observations
- merging of SMART-1 and ground based data
- ground based detection of SMART-1, and laser link experiment, radio detection and VLBI
- opportunities for outreach and education, adopt your crater, amateur lunar images competition

0

SMART-1 end of mission

- Orbit inclination 90.6 deg, from North to South
- If no maneuver Impact on 17 Aug on far side -> needed maneuver
- 2.6 kg hydrazine maneuver Maneuver on 23 June –8 July delta V 12 m/s, adjustement slots 26 July, 30 Aug
- Current impact prediction 3 sept 2006 (0:30)-2:00 UT +- 7 hours on near side in dark, near first quarter terminator
- Orbit prediction, perilune <200 km 10 July, < 120 km 7 aug
- Effect of topography (current altimetry, stereo, new observations)
- Possible locations of impact :
 - perilune 36 S, 44.2 W, impact TBC 34 S, 44.13 W
 - Previous orbit (-5 hours), impact 36.5 S, 41.4 W
 - Orbit after: impact 37 S+- 2 deg, 47 W
- Speed 2 km/s, grazing 1 deg over 10 deg slope,
- Artificial comet: 285 kg including 1 m3 body, 200 kg Aluminum, 3 kg Hydrazine N2H4, 0.26 kg Xenon, epoxy, 14 m carbon fiber arrays

Impact predictions and challenges

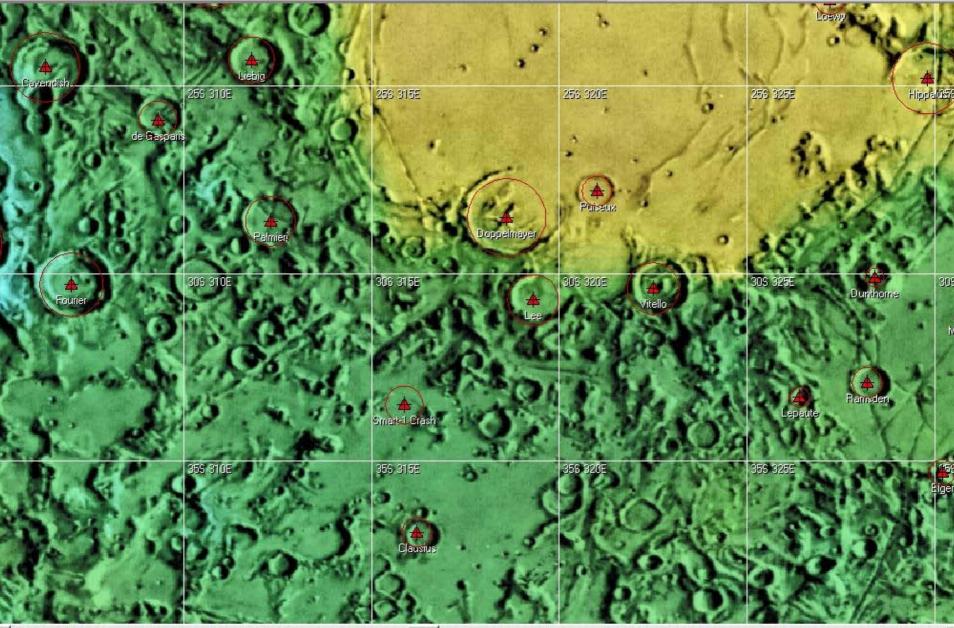
- Low velocity grazing impact 2 km/s
- Thermal flash (bolometric magnitudes during 1 s V=7-16 in infrared depending on efficiency 0.5-0.001)
- Probe signatures: (Al, N2H4, C)
- Ejecta, total mass, speed distribution, fraction with vertical V> 200m/s reaching sunlight
- Effective area of ejecta 50 km2 (obscuration, sunlight reflection)
- Exospheric effects (neutral emission production,
- Thermal cooling of impact hot spot over hours following impact
- Crater size (3-10 m ?) and morphology
- SMART-1 observations of previous impact sites, (e.g. rangers)
 Muses A 300 kg, 2.7 km/s, 1 kg hydrazine flash at 2 micron
- Prior observations of site of impact in July and August
- Rehearsal 9 July, 7 Aug, Straylight calibraiton,, support of impact observations

Impact observations

- Thermal infrared imaging of thermal flash,
- Visible/infrared imaging of dynamics of ejected clouds
 - Earthshine illumination (V=17 mag/arcsec 2),
 - Ejected mass 30-100 tons
 - Effective area/opacity/reflectivity of ejecta
 - Imaging of ejecta reaching sunlight (could be bright V= 5 / km2)
- Spectroscopy,
 - Al emission 396.1 nm (in low Ca II H solar Fraunhofer light)
 - hydrazine flame detection (NH3, H Balmer, Paschen, Brackett IR)
 - VLBI observations, accurate coordinates of impact crater
- Post-characterisation of ejecta, exospheric effects
- Follow up search for SMART-1 crater (with future lunar orbiters)

Facilities and observing requests, Moon visibility conditions

- Moon first half Moon, overlap visibility, straylight reduction
- Experience from Deep impact campaign
- ESO VLT,
- ESO La Silla,
- Galileo National Telescope (I),
- Tenerife OGS and other
- European continental observatories,
- US TBC Kitt Peak, Lowell, Palomar
- Hawaii observatories, TBC (Keck,
- Other international observatories
- Amateur observations
- Discussion
- Preparation/consolidation of observing collaborators/proposals/


Timeline for future actions and meetings

- March 15, 12h30: lunch meeting at LPSC dedicated to S1 update/ impact
- April 3-7: EGU, Vienna, Smart-1 papers in sessions PS1 Exploration, PS2 Moon science (6 April), PS12 impacts (7 April pm) and splinter meeting on "SMART-1 low altitude operations and impact"
- May 8-12: ESTEC ESLAB on impact craters (discussions with craters and deep impact experts)
- end June: two delta V hydrazine maneuvers
- 15 June: Smart-1 perilune below 300 km
- 10 July: cross tracking SMART-1 perilune below 200 km
- 27 July: near side
- 5.7 or 6.7 Aug: overflight of impact site at 120 km
- (coordinated observations and impact observations rehearsal)
- 10 24 Aug : farside
- 24 Aug New Moon and SMART-1 on disk edge
- 1 or 2 Sept 24:00 UTC impact (TBC), ESOC + national events
- 18-22 sept, Berlin Europlanet meeting, including session on SMART-1 results and coordinated observations
- <u>Bernard.Foing@esa.int</u> Cesa

File View Windows Help

_10

