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ABSTRACT

We present an overview of Cluster’s ability to determine
the orientation, motion and thickness of boundary layers,
and try to identify where and when a particular method
is more suitable than another. With Cluster, three dif-
ferent principles can be used for discontinuity analysis;
four-spacecraft timing methods, four-spacecraft gradient
methods and single-spacecraft residue methods based on
conservation laws. Timing methods make use of (and
require) data from all four Cluster satellites. Boundary
layer orientation, motion and thickness are determined
from time differences between the crossings by the four
spacecraft and the crossing duration. Variations of the
timing methods can be used to take into account non-
uniform thickness or non-constant motion of boundaries.
Cluster’s ability to determine gradients can also be used
for discontinuity analysis. The orientation of a discon-
tinuity can in some cases be obtained by examining the
gradient of the field or plasma data directly. Alternatively,
the gradient operator can be used to determine the elec-
tric current via Amperes law, or the time variation of the
magnetic field via Faraday’s law of induction. Variance
analysis of these quantities thereafter give the orientation
and integration across the discontinuity can be used to
determine the velocity and thickness of the layer. Dis-
continuity analysis methods based on conservation laws
and residue analysis may utilize data from one or more
of the Cluster satellites, and can be combined with multi-
spacecraft methods to improve these or for consistency
checks. Constraints, for example by requiring the mag-
netic field to be tangential to the discontinuity or by re-
quiring zero plasma flow respectively Alfvénic plasma
flow across the discontinuity, can be used to improve the
stability of the results.

Key words: Discontinuity analysis, Magnetopause, Tech-
niques and methods.

1. INTRODUCTION

The determination of orientation, thickness and motion of
boundaries was one of the prime objectives of the Cluster
mission. These parameters are of vital importance for
the analysis of many physical processes taking place in a
plasma region.

In this paper, we give an overview of the different meth-
ods, and try to identify where and when one method may
be better suited than another. We also show some exam-
ples of application of Cluster data.

1.1. Definitions

In this paper, we use the termdiscontinuityto a region of
space where an abrupt spatial change in field or plasma
occurs. With the Cluster orbit in mind, four regions, il-
lustrated in Figure 1, stand out as particular interesting:

A© the solar wind, including the bow shock and convected
solar wind discontinuities;B©; the magnetopause; andC©
the polar cusp. Many of the techniques and methods de-
scribed in this paper are also applicable for structures and
layers in the current sheet and plasma sheet of the mag-
netotail D©. Since the parameters and physical processes
are quite different in these regions, different methods and
approaches have been used to investigate them. We will
argue that the magnetopause and polar cusp put the great-
est challenge to the application of discontinuity analysis;
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Figure 1. The four main discontinuity regions traversed
by Cluster. A© solar wind, including the bow shock
and convected solar wind discontinuities,B© the magne-
topause, C© the polar cusp, andD© the magnetotail.

Both are highly dynamical, and often have small scale
compared to the Cluster tetrahedron.

1.2. Cluster advantages

A unique feature of the Cluster mission is that it pro-
vides the first four-spacecraft measurement in and near
the Earth’s magnetosphere. With such an constellation,
it is in principle possible to unambiguously determine
both orientation, motion and any thickness of a disconti-
nuity such as the bow shock, the magnetopause or the tail
plasma sheet. Some of the most frequently used meth-
ods and their underlying assumptions will be discussed in
Section 2.1. Another useful property of the tetrahedron-
like constellation is that full three dimensional gradients
in the measurements can be determined. Discontinuity
analysis based on gradient calculations will be discussed
in Section 2.3.

Each Cluster spacecraft carries a comprehensive set of in-
struments for both field and particle measurements. The
quality of these measurements have allowed testing of
new single-spacecraft methods, not possible with earlier
missions. Section 2.4 gives an overview of single space-
craft methods for discontinuity analysis.

2. TECHNIQUES

Table 1 gives an overview of techniques that have been
used or tested with Cluster data. In this section, we give
a brief description of each method.

2.1. Four spacecraft timing methods

Four spacecraft timing methods require that a single com-
mon feature of a discontinuity can be identified at four
different locations and usually from different times when
crossing the discontinuity. Identifying the common fea-
ture and time tagging this at each of the four spacecraft
is therefore an essential element of timing methods. Ad-
ditional information, for example the duration of a cross-
ing can give information about thickness and evolution
or acceleration of the discontinuity. A method, based on
timing alone, for determination of the orientation, speed
and thickness of a discontinuity moving past four observ-
ing spacecraft was first presented by Russell et al. (1983),
who applied it to interplanetary shocks.

2.1.1. Crossing times and duration

Crossing times and durations can in principle be derived
from any measured quantity provided the time resolution
is sufficient. Experience with Cluster suggest that the
magnetic field or density proxies from the EFW instru-
ments provide the best results. Timing and duration from
the magnetic field are often easier to estimate if the mea-
surements are rotated into a maximum-variance coordi-
nate system. A common coordinate system for all four
spacecraft may be used (see Section 2.4.2), but this is not
critical since the direction of the maximum variance com-
ponent is typically well determined.

For many discontinuities, the maximum variance com-
ponent,Bmax of the magnetic field resembles a Harris-
sheet-like profile;Bmax(t) = f(t) ∝ tanh(t/2 τ)
(see e.g., Haaland et al., 2004a; Paschmann et al., 2005;
Thompson et al., 2005). A similar fit can often be
done with plasma density measurements (e.g., Bale et al.,
2003). For such cases, a natural definition of crossing
time, denotedt0 in Figure 2, is the time wheref(t) has
reached 50% of its extremal value. Also, the hyperbolic
tangent curve representing a Harris sheet has the prop-
erty that 76% of the total change,∆f(t) occurs within
the characteristic time interval2 τ .

Crossing times,tc (c=0,1,2,3), for each crossing is de-
fined here as the time where the measured quantity f(t)
crosses the zero line. This definition of crossing time is
not unique: Since the multi-spacecraft methods rely on
relative timing only, any distinct feature observed by all
spacecraft can be used for timing.

2.1.2. Velocity and orientation

At this stage, the unknown parametres are the orienta-
tion and velocity of the discontinuity. The orientation is
assumed to be the same at all four spacecraft, i.e., the dis-
continuity has to be planar on the scale size of the space-
craft separation distance. The velocity may be constant
or variable, depending on a-priori knowledge about the
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Table 1. Overview of some techniques used to obtain orientation,n, velocity,Vn and acceleration,an, of a discontinuity.
The input quantities and their symbols are :R - spacecraft separation vector;B - magnetic field;V - plasma velocity;
E - electric field;J - current density; n - plasma number density;n - a single spacecraft normal (DA only);ρ - mass
density;pB - magnetic pressure; P, p - particle pressure as tensor or scalar; Q - heat flux tensor;tc, τ - crossing time and
duration (see text and Figure 2).

Method Abbreviation Inputs Parameters returned
n Vn an

Timing methods:

Constant Velocity Approach CVA R, tc
√ √

-
Constant Thickness Approach CTA R, tc, τ

√ √ √

Minimum Thickness Variation MTV R, tc, τ
√ √ √

Minimum Velocity Variation MVV R, tc, τ
√ √ √

Discontinuity Analyser DA R, tc, n+ √ √
(
√

)

Gradient methods:

Orientation from gradient of a quantity GRAD R, e.g.,ρ, pB
√ √

-
Minimum variance analysis of∇×E MVAcE R, E

√ √
-

Minimum variance analysis of current density MVAJ R, J
√ √

-
Minimum Directional Derivative MDD R, B

√
- -

Spatio-temporal Difference STD R, B -
√ √

Single spacecraft methods:

Minimum variance analysis of B-field MVAB B
√

- -
Maximum variance analysis of E-field MVAE E

√
- -

Minimum variance analysis of plasma velocity MVAV V
√

- -
Minimum variance analysis of current density MVAJ J

√ √
-

Minimum Faraday residue analysis MFR B, E∗ √ √
-

Minimum mass flux residue analysis MMR V, n
√ √

-
Minimum variance of∂B/∂t MVADB B

√ √
-

Minimum linear momentum residue analysis MLMR V, B, n, P
√ √

-
Minimum total energy residue analysis MTER V, E, B, n, P, Q# √ √

-
Minimum entropy residue analysis MER V, B, n, p†,

√ √
-

deHoffmann-Teller analysis HT V, B -
√ √

+ The Discontinuity Analyzer (DA) in its original form does not explicitly provide a numerical value for acceleration.
∗ E typically derived from−V ×B.
# The heat flux vector, Q, is often small and can be ignored.
† Method only tested with isotropic pressure.
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Figure 2. Idealized magnetic field (or density) profile
across a discontinuity, and one possible definition of
crossing time,t0, and crossing duration,2 τ . With a
known velocity,Vd, of the discontinuity, the thickness,dd

is given by2τ∗VMP . After Paschmann et al. (2005)

discontinuity and the initial assumptions. The thickness
of the discontinuity is also of interest. It may be identical
at the four spacecraft or varying from one spacecraft to
another.

A generic approach to find these quantities is as follows:
Assume that the instantaneous velocity of a discontinuity
is expressed by:

V (t) = A0 + A1t + A2t
2 + A3t

3 (1)

where Ac (crossing number c=0,1,2,3), are constants
to be determined from the crossing times and durations.
With the above expression for V(t), we find the disconti-
nuity thicknesses,dc (c=0,1,2,3), to be

dc =
∫ tc+τc

tc−τc

V (t)dt

= 2τc

[
V (tc) + (A2τ

2
c )/3 + A3tcτ

2
c

]
(2)

The center crossing times,tc, and crossing durations,τc

are considered as known quantities. The distance traveled
by the discontinuity, between crossing CRi and crossing
CR0 (not to be confused with the Cluster spacecraft nam-
ing convention; C1. . . C4) along a fixed normal direc-
tion, n, is then

Rc · n =
∫ t=tc

t=0

V (t)dt

= A0tc +
A1t

2
c

2
+

A2t
3
c

3
+

A3t
4
c

4
(3)

whereRc (c=1,2,3) is the relative position of the space-
craft having the c’th crossing relative to the position of
that having the first crossing (c=0).

Depending on the initial assumptions, these generic ex-
pression have to be treated differently hereafter :

2.1.3. Constant Velocity Approach

In the Constant Velocity Approach (CVA) (Russell
et al., 1983), the coefficientsA1, A2, andA3 in expres-
sion (1) are put to zero so thatA0 becomes the constant,
but unknown, velocity. The three equations (3) can then
be solved for the vectorm = n/A0 and the coefficient
A0, which is then the velocity of the discontinuity, can be
obtained from the normalization|n|2 = 1.

Note that the crossing duration is not needed to deter-
mine velocity or orientation with this method. Since the
velocity is assumed constant, any differences in duration
is here attributed to variations in the thickness of the dis-
continuity.

2.1.4. Acceleration

For discontinuities where a significant acceleration is
present, e.g., the magnetopause or a flapping tail cur-
rent sheet, the above method will not give correct an-
swers. A better alternative in such cases may be the
Constant Thickness Approach (CTA), where the thick-
nessesdc, rather than the velocity, are assumed the
same at all spacecraft (Haaland et al., 2004a). The four
equations (2) can then be solved for the four quantities
A0/d, A1/d, A2/d andA3/d and, subsequently, the three
equations (3) for the vectorm = n/d. Finally, the thick-
nessd is obtained from the normalization ofn. An ex-
plicit expression for the acceleration is obtained by taking
the time derivative of equation (1).

TheDiscontinuity Analyzer (DA) , first applied to Clus-
ter data by Dunlop et al. (2002), also addresses accelera-
tion of the discontinuity. In contrast to CTA, however, the
normal direction is taken from one of the single space-
craft methods described in Section 2.4, typically mini-
mum variance of the B-field. Equations (3) can then be
solved for the coefficientsA0, A1, andA2 but A3 must
be put to zero. The DA approach is not a pure multi-
spacecraft timing method because it makes use of a nor-
mal vector obtained from single-spacecraft data analy-
sis. It has the advantage that it permits both velocity and
thickness of the magnetopause to vary from crossing to
crossing in an event. Its disadvantage is that the veloc-
ity polynomial in equation (1) becomes quadratic rather
than cubic, which is less flexible and can easily lead to
unreasonable results.

2.1.5. Combined approaches

The Minimum Thickness variation (MTV) method is
used to obtain a single multi-spacecraft answer to the ori-
entation and to the velocity and thickness variations dur-
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ing an encounter of the four Cluster spacecraft with the
magnetopause. It is a combination of CVA, CTA, and
DA but uses no single-spacecraft method and produces a
cubic velocity polynomial.

In the MTV method, the orientation is a normalized aver-
age of the normal vectors obtained from CVA and CTA,
which are usually not the same (if they are the same
then the crossing has both constant velocity and constant
thickness). Once the combined normal is known, the
MTV method uses a scheme similar to DA, i.e., equa-
tions (3), to provide three of the four equations needed
to determine the velocity coefficientsA0 . . . A3. Rather
than puttingA3 = 0, a fourth equation is obtained from
the subsidiary condition that the variance of the thick-
nesses seen at the four spacecraft should be a minimum.
This condition is again not unique, but may be appropri-
ate for the magnetopause where thickness variations are
expected to be much smaller than the velocity variations
during a typical event. The algebraic details of the MTV
method are outlined in Paschmann et al. (2005)

Analogue to the MTV method, one could also envisage
a Minimum Velocity Variation (MVV) method, where
variations in the normal velocity rather than the thickness
were minimized.

Both the MTV and MVV methods are algebraically com-
plicated, but the advantage of producing a single answer,
rather than separate answers from CVA and CTA. They
are based entirely on multi-spacecraft timing and avoids
the pitfalls associated with the use of single-spacecraft
methods for obtaining the vector normal to the magne-
topause. For individual events, it may not always be opti-
mal but for statistical studies it is desirable to use a single
method.

2.1.6. Caveats - Timing methods

There are some pitfalls that may influence the quality of
timing methods :

Partial crossings. Timing methods are only useful if
timing is available from all four spacecraft. For stud-
ies of periodic discontinuity crossings, e.g., waves in the
magnetotail or on the magnetopause, the wave amplitude
must thus be larger then the spacecraft separation dis-
tance in order to be detected on all four spacecraft.

Stationarity and planarity. The discontinuity is as-
sumed to be stationary and planar. Quantities measured
at different locations and at different times at each space-
craft are assumed to correspond to the same structure.
This item is discussed in e.g., Dunlop and Woodward
(1998); Schwartz (1998).

2

1

3

L

N

M

Figure 3. Illustration of different Cluster spacecraft tetra-
hedron shapes relative to a discontinuity. The various
configurations give various success rates; The regular
tetrahedron shape in configuration 1 is the best compro-
mise to infer orientation and motion. In the elongated
configuration in 2 and the nearly planar configuration in
3, the orientation, respectively the velocity is very sensi-
tive to timing accuracy.

Timing accuracy. Although a discontinuity is planar
over the spacecraft separation distance, the individual
time series profiles used for timing may usually contain
wiggles due to small scale structures that make exact tim-
ing difficult. Cross correlation or similar methods may be
used where visual inspections or the method illustrated
in Figure 2 fail. Timing errors become more important
when spacecraft separation is small or the discontinuity
moves very fast across the spacecraft.

Spacecraft separation and configuration. The geo-
metrical shape of the tetrahedron formed by the four
Cluster satellites changes continuously along the space-
craft orbit. Figure 3 shows a discontinuity and 3 possi-
ble spacecraft tetrahedron shapes. For the discontinuity
shown, the various tetrahedron configurations will give
different success rates. The nearly regular tetrahedron
marked 1 is a good compromise to determine both ori-
entation and speed of the discontinuity. In the elongated
configuration 2, the normal determination will be very
sensitive to the timing accuracy, whereas in configuration
3, the velocity determination will be very sensitive to tim-
ing accuracy. In extreme cases with four satellites aligned
along a line, or in a plane, none of the timing methods
can be used. For a discussion of tetrahedron geometry,
see e.g., Robert et al. (1998) or Chanteur (1998).

2.2. Examples - Timing methods

Figure 4 shows an example of results based on timing
methods. The top panel shows the thickness distributions
of solar wind discontinuities (Knetter et al., 2004). They
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used the CVA method combined with magnetic field mea-
surements to study the thickness and classification of dis-
continuities in the solar wind. Based on 129 events where
data from all four spacecraft were available, they found
that most of the solar wind discontinuities were tangential
discontinuities (see also 2.5) less than 3000 km thickness,
though there were cases with thicknesses above 15000
km.

The second and third panel show similar results from the
magnetopause. Paschmann et al. (2005) used data from
96 crossings from the dawnside magnetopause. They
used the MTV method and found an average thickness
of ∼ 750 km and an average velocity of∼ 50 km s−1.

2.3. Gradient methods

A discontinuity involves a spatial change in magnitude or
direction of a field or plasma quantity. A unique property
of the Cluster mission is the ability to determine full three
dimensional gradients. This can be utilized to determine
properties of the discontinuity.

2.3.1. GRAD - Gradient of a scalar quantity

The simplest gradient method is to assume that the local
discontinuity normal points in the direction of the gradi-
ent of a field or plasma quantity :

n = ∇f(t)/|∇f(t)| (4)

wheref(t) can be any scalar quantity, e.g., density or
magnetic pressure (Shen et al., 2003).

2.3.2. MVAJ - Minimum Variance of Current Density

The MVAJ method (Haaland et al., 2004b) uses magnetic
field measurement from four spacecraft to estimate the
current density, followed by minimum variance analysis
to establish the current sheet orientation. Velocity and
thickness of the current sheet are obtained by integrating
the current density across the current sheet.

The current density can be determined from the curlome-
ter technique (e.g., Robert et al., 1998), which utilizes
Ampères law and magnetic field,∇×B = µ0J. There-
after, the current sheet orientation is established by per-
forming minimum variance analysis of the current den-
sity (MVAJ). The underlying physics is that∇ · J = 0
(just as the basis for minimum variance of the magnetic
field is that∇ · B = 0). This step provides a current-
sheet aligned coordinate system where the three orthog-
onal axes are the eigenvectors from the variance analy-
sis. In the new coordinate system, the two components of
Ampères law can now be written as:
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Figure 4. Top panel: Normalized distribution of solar
wind discontinuity thickness. The two vertical lines de-
note average (2773 km) and median (1373 km) thick-
nesses of the 129 events studied.(Knetter et al., 2004).
Middle panel and lower panel: Statistical distribution of
magnetopause thickness and velocity respectively. Note
that a few of the crossings have velocities above 300
km s−1 (Paschmann et al., 2005).
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µ0J1 = (∇×B)1 = −∂B2

∂x3
= −dB2

dt

1
v3

(5)

µ0J2 = (∇×B)2 =
∂B1

∂x3
=

dB1

dt

1
v3

wherev3 is the velocity, assumed constant, of the mag-
netopause along the the normal directionx̂3. The con-
version from spatial differentials to time differentials is
made by use ofv3. Integrated across the magnetopause,
these equations give:

∆B2 = −µ0v3

∫ t1
0

J1dt

(6)

∆B1 = µ0v3

∫ t1
0

J2dt

where t1 on the right hand side is the time it takes to
cross the current layer. Ideally, the two equations should
give the same value forv3 but, when applied to experi-
mental data, uncertainties and deviations from model as-
sumptions will almost always produce slightly different
values.

The expression (6) holds for any time segment of the dis-
continuity; acceleration can then be addressed by con-
sidering a set of shorter time segments within the total
crossing time.

MVAJ thus provide both orientation and state of motion
of the discontinuity without use plasma data.

2.3.3. MDD - Minimum Directional Derivative

The timing methods mentioned in Section 2.1, all assume
that the orientation of the discontinuity does not change
during the time interval it takes for all four spacecraft to
cross. Without using sliding segments, there is thus no
way to check whether the discontinuity changes its ori-
entation during this time period. TheMinimum Direc-
tional Derivative (MDD) method by Shi et al. (2005b)
addresses this issue by calculating a normal direction at
every moment.

Assume thatn(t) is the (yet unknown) normal of the dis-
continuity at timet, and∇B(t) is the magnetic field gra-
dient tensor at that moment. A vectorD(t), which rep-
resents the directional derivative along the normal of the
magnetic field gradient, is then given by :

D(t) = n(t) · ∇B(t) =
∂B(t)
∂n(t)

=
[
∂Bx(t)
∂n(t)

,
∂By(t)
∂n(t)

,
∂Bz(t)
∂n(t)

]
(7)

In analogy with variance analysis (see Section 2.4), the
normal directionn(t), can now be found by minimizing
D2(t). Algebraically, this consists of finding the eigen-
values and eigenvectors of a symmetric covariance matrix
given by :

Lij =
3∑

k=1

∂Bk

∂xi

∂Bk

∂xj
, (i, j = 1..3) (8)

Provided that the eigenvalues are sufficiently different
(see also discussion in Section 2.5.1), the eigenvector cor-
responding to thelargesteigenvalue provides an estima-
tion of the normal directionn of a nearly one-dimensional
discontinuity. Degenerate solutions, where the three
eigenvalues,λ1, λ2, λ3 are nearly identical indicate a 3D
structure; whereas cases withλ1, λ2 � λ3, indicate a
two-dimensional structure.

2.3.4. STD - Spatio Temporal Difference

The Spatio Temporal Difference method (STD)(Shi
et al., 2005a) is an extension of the MDD method, and
uses the magnetic gradient tensor to find the velocity of a
structure. The time derivative of the magnetic field at any
moment can be written

dB(t)
dt

=
∂B(t)

∂t
+ U(t) · ∇B(t) (9)

whereU(t) is the sought convective velocity of the struc-
ture. For stationary structures, left hand side of Equation
(9) is zero, and one ends up with :

∂B(t)
∂t

+ U(t) · ∇B(t) = 0 (10)

which can be solved forU(t).

The combination of MDD and STD is thus, in principle,
able to provide both orientation and velocity of a structure
at any instant.

2.3.5. Caveats - Gradient methods

Many of the caveats from timing methods apply here too.
Also, since all gradient methods are based on a linear
approximation of gradients, the minimum requirement is
that the spacecraft separation distance is smaller than the
scale sizes of the structure. The ratio∇·B/|∇×B|may
be used as a rough quality estimate of gradient methods.
Values� 1 are desirable, but no guarantee for a cor-
rect answer. The shape of the Cluster tetrahedron will
also influence the accuracy of gradient methods - see e.g.,
Chanteur (1998).
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Figure 5. Magnetopause orientation and velocity during
a Cluster crossing of the dayside magnetopause around
03:30 UT on 2 March, 2002. Top panel : Normal compo-
nents from the MDD (solid lines) and MVAJ (dashed lines
- X and Y components almost falls on top of each other)
methods. Bottom panel : Normal velocity from the STD
method (solid line). The black square shows the range
of velocities from (Haaland et al., 2004b). Within the
time interval 03:31:08 - 03:31:13 (shaded area), there is
a good agreement between the methods. From Shi et al.
(2005a).

2.3.6. Example - Gradient methods

Figure 5 shows an example of application of the MVAJ,
MDD and STD methods to a Cluster magnetopause
crossing around 03:30 UT on 2 March, 2002. Solid lines
in the upper panel shows the three components of the
boundary normal derived from MDD; dashed lines are
the corresponding MVAJ based normal components. The
velocities (lower panel) of the magnetopause in this case
ranges from∼ -42 km s−1 to -30 km s−1, and there is a
good overall agreement between the various methods.

2.4. Single-spacecraft methods

Each of the four Cluster spacecraft carries a comprehen-
sive set of instruments for both plasma and field mea-
surements. This can be utilized in a number of different
ways for discontinuity analysis. In particular, the qual-
ity of some of the higher order moments from the Cluster
plasma instruments allowed, for the first time, the use of
plasma data alone for discontinuity analysis (see e.g. Son-
nerup et al., 2004). The lower part of Table 1 lists some
of the single spacecraft methods to determine motion and
orientation of a discontinuity that have been tested with
Cluster data.

2.4.1. A generic approach

The basic mathematical procedure of single-spacecraft
methods are similar for nearly all methods. This lead
Sonnerup et al. (2005) to suggest a generic approach
based on residue analysis of conservation laws. This pro-
cedure incorporates the magnetohydrodynamic (MHD)

conservation laws for mass, energy, momentum and en-
tropy. The same scheme can also be adapted for con-
servation laws derived from Maxwell’s equations; mag-
netic flux conservation, conservation of magnetic poles,
and conservation of electric charge.

In the approach of Sonnerup et al. (2005), and employing
the Einstein notation (summation over repeated indices),
the generic conservation law can be written as

∂ηi

∂t
+

∂qij

∂xj
= 0 (11)

whereηi is the density of the conserved quantity andqij

is the corresponding transport tensor. If the conserved
quantity is a scalar, e.g., mass (ηi ≡ η = ρ), the indexi
is simply dropped, andqij ≡ qj = ρvi is then a transport
vector.

Assume now that the one dimensional, time invariant dis-
continuity moves with a constant speedun along the yet
unknown normaln. In this co-moving frame, the time
dependence disappears and Equation (11) can be written

−un
dηi

dx′
+

d(njqij)
dx′

= 0 (12)

wherex′ are the coordinates of the co-moving system.
Integrated across the discontinuity, this gives

−ηiun + njqij = C (13)

whereC is an integration constant.

For real discontinuities, there will always be deviations
from the ideal one-dimensional, time invariant model
above; Equations (11) to (12) will therefore not be per-
fectly fulfilled for any measurement across the layer, but
the optimal result can be obtained by minimizing the
residue :

R =
1
K

k=K∑
k=1

∣∣∣−η
(k)
i un + njq

(k)
ij Ci

∣∣∣2
=

〈∣∣∣−η
(k)
i un + njq

(k)
ij Ci

∣∣∣2〉 (14)

This expression can be solved for the optimal values of
C∗ andu∗, whereu∗ ·n is the optimal velocity of the dis-
continuity. The resulting matrix, has the formniQijnj ,
whereQij is a symmetric matrix similar to covariance
matrices known from minimum variance analysis. The
eigenvectors of this matrix determine the orientation of
the discontinuity; the eigenvectorx3 corresponding to the
smallest eigenvalue,λ3, gives the normal of the discon-
tinuity. Similarly, the eigenvalue ratio provides informa-
tion on how well the eigenvectors are resolved.
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A number of specific conservation laws can be formu-
lated, and treated according to the above scheme. A com-
plete description is given in Sonnerup et al. (2005); here
we briefly mention some of the variants where the method
has been tested with Cluster data.

Minimum Variance Analysis of the magnetic field
(MVAB) , first applied by Sonnerup and Cahill Jr. (1967)
for discontinuity analysis of magnetopause traversals, has
become a standard method to determine the boundary
normal of a discontinuity. The underlying physics is
the conservation of magnetic solenoidality (expressed as
∇ · B = 0), which can be cast into the generic form
of Equation (11). The plasma flow along this normal
gives a rough idea about the velocity, at least in cases
with no reconnection and thus no plasma flow across
the magnetopause. A better estimate of the speed of a
discontinuity is often obtained fromdeHoffmann-Teller
analysis (HT), in which one tries to find a frame of ref-
erence where the electric field disappears, i.e., a frame
co-moving with the discontinuity. A detailed discussion
about HT analysis and MVAB can also be found in Son-
nerup and Scheible (1998) and Khrabrov and Sonnerup
(1998b).

Minimum variance of current density (MVAJ) , is very
similar to MVAB, and is based on the fact that the total
charge is conserved across the boundary, i.e.,∇ · J = 0
The current density can, in principle, be determined from
the relative ion- and electron velocities. However, MVAJ
has so far only been applied to Cluster for cases with
J derived from the four-spacecraft curlometer technique
(Haaland et al., 2004b). As shown in Section 2.3.2,
MVAJ provides both orientation and speed of the discon-
tinuity.

Minimum massflow residue analysis (MMR) is based
on conservation of mass across the discontinuity, and
does not require any information about the magnetic field
across the boundary. MMR can provide both orientation
and velocity of a discontinuity. Although use of mass
conservation for these purposes was first described in
Sonnerup and Scheible (1998), Cluster was the first mis-
sion where the plasma moments were of sufficient quality
to make use of the MMR method (Sonnerup et al., 2004).

Minimum Faraday residue analysis (MFR) (Terasawa
et al., 1996) is based on conservation of magnetic flux
across a boundary. It utilizes Faraday’s law across the
magnetopause current layer to find a moving frame and
orientation such that the tangential component of the
electric field is as constant as the data permit. For practi-
cal purposes, the convection electric field is often used
and is calculated from the plasma velocity viaE =
−V × B. MFR returns both a normal and a velocity
of the discontinuity. A convenient approach to MFR is
shown in Khrabrov and Sonnerup (1998a).

Minimum linear momentum residue analysis
(MLMR) is based on momentum conservation across
a discontinuity. It uses the MHD momentum balance
equation and includes the pressure gradient and the

Lorentz force. The plasma moment products from
Cluster contain the full pressure tensor, so effects of
non-isotropic pressure can be incorporated. In Sonnerup
et al. (2005), however, MLMR was applied with a
isotropic pressure. MLMR returns both a normal vector
and a velocity of the discontinuity.

Minimum total energy flux residue analysis (MTER)
also provides both orientation and speed of a discontinu-
ity, and is based on energy conservation. The total en-
ergy includes both kinetic energy, heat flux and Poynting
flux. Input to this method thus ideally have to include
higher order plasma moments like the heat flux tensor and
pressure tensor. Also, to incorporate Ohmic dissipation,
electron pressure terms and Hall effects, the Poynting
flux should ideally come from the measured total electric
field. However, benchmarks by Sonnerup et al. (2005)
suggest that isotropic pressure, omitting the heat flux, and
usingE = −V×B as a proxy for the electric field gives
reasonable results.

Minimum entropy residue analysis (MER) is derived
from MTER, but the viscous dissipation terms, heat con-
duction and electrical resistivity has been dropped. MER
is applicable for rotational discontinuities (RDs) and also
for cases where there is no plasma flow across the discon-
tinuity. In MHD these are tangential discontinuities (TDs
- see also Section 2.5) and contact discontinuities (CDs).

2.4.2. Combining several methods

Results from two or more of the above residue methods
can be combined to produce a single estimation of the
orientation and velocity. This is done by adding a set of
suitable weighted and normalized covariance matrices (Q
- matrices), and then calculate the eigenvalues and eigen-
vectors of the combined matrix. The weighting and nor-
malization of the individual Q-matrix is not unique, but it
is desirable to put more emphasis on results from individ-
ual methods for which the eigenvalues are well separated.

A composite matrix with weights,wk for each method,
can thus be expressed

QCOMij =
k=K∑
k=1

w(k)Q
(k)
ij (15)

The composite normal of the discontinuity is then the
eigenvectorx3 corresponding to the smallest eigenvalue,
λ3, of QCOM .

Similarly, a composite velocity of the discontinuity can
be obtained as

U∗
COM =

k=K∑
k=1

w(k)U∗
k (16)
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so that the velocity of the discontinuity becomes
U∗

COM · n. The composite method thus utilizes all
available data measured within a discontinuity. It may
improve accuracy and reveal properties not immediately
seen if only one of the methods were used.

As a variant of the composite method, one may also add
Q-matrices from different spacecraft, or combine data
vectors from more spacecraft in the above methods. For
small spacecraft separations, this may be useful when the
discontinuity is thin, and only a handful of measurements
are available from each spacecraft. In the example in Fig-
ure 6, this method has been used to construct a composite
MVAB normal.

2.4.3. Caveats and error sources

For methods using plasma data, time resolution and/or
the quality of higher order moments may be insufficient
for some cases. For Cluster, some of the higher order
moments are only available at∼12 second resolution.
Also, since all of the above methods are based on vari-
ance analysis, the eigenvalue ratio from the eigen anal-
ysis of the covariance matrix provides a rough estimate
about the quality of the normal determination. Well sep-
arated eigenvalues are desirable, but no guarantee for a
correct determination of orientation - see e.g., Haaland
et al. (2004a). It is recommended that the analysis is per-
formed on nested sets of data intervals centered around
the discontinuity being studied. Statistical error analysis
for MVAB (and related methods) are described in Son-
nerup and Scheible (1998).

2.4.4. Examples - Single spacecraft methods

Figure 6 shows a polar plot of normal directions ob-
tained with various methods during a Cluster magne-
topause crossing on 5 July 2001 (this event is described in
detail in e.g., Haaland et al., 2004a). Each symbol repre-
sent a projection of a normal into a the plane perpendicu-
lar to a reference normal (“bulls eye normal”) constructed
from a combination of the individual MVAB results from
each spacecraft. The concentric circles represent devi-
ations (cone angle) from this reference normal. Despite
being based on widely different data and different conser-
vation laws, all methods give a normal within 6 degrees
of the reference normal. The orientations from some of
the multi-spacecraft methods described in 2.1 are shown
for comparison.

2.5. Classification of discontinuity type

While four-spacecraft methods may be better suited for
robust determination of speed, orientation and thickness,
some properties of the discontinuity are better estimated

Figure 6. Polar plots of normal orientations obtained
from various methods during a magnetopause crossing
on 5 July, 2001. Each symbol represents one method
to determine the orientation of a discontinuity (see text
for abbreviations). The center of the plot (the “bullseye”
normal) is here thenCOM normal based on MVAB re-
sults from each spacecraft.

from analysis of individual spacecraft crossings. This ap-
plies in particular to the classification of the crossings
into tangential (TD) or rotational (RD) discontinuities.

A tangential discontinuity separates two different plasma
regions. In the absence of diffusion, there is no mix-
ing of the two plasma regimes, and they may have two
different compositions. A TD is thus classified by zero
plasma flow across (no flow component along the nor-
mal), zero normal magnetic field component, and con-
stant total pressure,p = pB +pp across the discontinuity.
A rotational discontinuity (RD), on the other hand, have
a finite normal component, but since RDs are Alfvénic
structures, the magnetic field changes should be corre-
lated with changes in the plasma flow.

There have been attempts to classify solar wind disconti-
nuities as RDs or TDs based on the magnetic field alone
(Neugebauer et al., 1984; Horbury et al., 2001; Knetter
et al., 2004), but the success of such methods inherently
depends on the ability to establish the true normal of
the discontinuity. In practice, there are many ambiguous
cases where no classifications can be done.

A more reliable method, which utilizes plasma data, is
the so-called Walén test (e.g., Khrabrov and Sonnerup,
1998b, and references therein). This consists of plotting
the plasma bulk velocity components measured during a
discontinuity crossing (after transformation into a suit-
able frame, co-moving with the discontinuity - typically
the deHoffmann-Teller (HT) frame), against the corre-
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sponding components of the measured Alfvén velocities.
The results are characterized in terms of the slope,α and
correlation coefficients between (V −VHT) andVA. A
poor correlation or slopes close to 0 indicate tangential
discontinuity, whereas RDs should have a slope close to
±1. However, even some TDs may have Alfvénic nature;
In a statistical study of the magnetopause, Paschmann
et al. (2005) therefore adapted a threshold of 0.5 to dis-
tinguish between RDs and TDs. The presence of recon-
nection signatures, e.g., plasma jetting, provided support
for the classification of cases with Walén slopes of only
0.5 as RDs.

2.5.1. Use of constraints

If one has a-priori knowledge about the nature of a dis-
continuity, it may be desirable to impose constraints to
the minimum variance analysis. For example, an ideal
TD has zero magnetic field along the normal. One might
then do the analysis so that the predicted normal,n,
is perpendicular to the direction of the average mag-
netic field e = 〈B〉/|〈B〉|. As suggested by A. V.
Khrabrov (see Sonnerup and Scheible, 1998), such a
constraint can easily be imposed to the variance analysis
by replacing the covariance matrix,Q, by the projection
Q′

kn = Pik Qkn Pnj, where the projection matrix is given
by

Pij = δij − eiej (17)

δij being the Kronecker delta symbol. The eigenvectors
of Q′ now have a different meaning; since we introduce a
known quantity, the vectore, the lowest eigenvalue will
be zero, and its corresponding eigenvector,X3 = e. The
eigenvectorX2, corresponding to the lowest, non-zero
eigenvalue will now be the normal predictor. Typically,
constrained variance analysis will give mores stable re-
sults.

The above formalism can also be used to impose other
constraints on one-dimensional discontinuities. An
overview of such constraints are given in Sonnerup et al.
(2005).

3. SUMMARY

We have given a brief overview of Cluster’s ability to
determine macroscopic features like orientation, veloc-
ity and dimensions of discontinuities. With a four space-
craft mission like Cluster, a number of different methods
for discontinuity analysis are possible. No single method
stands out as superior, and the choice of method depends
on the initial assumptions. To avoid particular caveats
and weaknesses of a single method, it is always recom-
mended to try alternative methods. When the Cluster

spacecraft separation is increased, four-spacecraft meth-
ods may not work, and one has to rely on single space-
craft methods for determining orientation and motion of
discontinuities.
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B., Paschmann, G., and Vaivads, A., Orientation and
motion of a discontinuity from cluster curlometer ca-
pability: Minimum variance of current density,Geo-
phys. Res. Lett., 31, 2004b.

Horbury, T. S., Burgess, D., Fränz, M., and Owen, C. J.,
Three spacecraft observations of solar wind disconti-
nuities,Geophys. Res. Lett., 28, 677–680, 2001.

Khrabrov, A. V. and Sonnerup, B. U.̈O., Orientation and
motion of current layers: Minimization of the Faraday
residue,Geophys. Res. Lett., 25, 2373, 1998a.

Khrabrov, A. V. and Sonnerup, B. U.̈O., deHoffmann-
Teller analysis, in Analysis Methods for Multi-
Spacecraft Data, edited by G. Paschmann and P. W.
Daly, ISSI SR-001, p. 221, ESA Publications Division,
1998b.

11



Knetter, T., Neubauer, F. M., Horbury, T., and Balogh,
A., Four-point discontinuity observations using Cluster
magnetic field data: A statistical survey,J. Geophys.
Res., 109, 6102, 2004.

Neugebauer, M., Clay, D. R., Goldstein, B. E., Tsurutani,
B. T., and Zwickl, R. D., A reexamination of rotational
and tangential discontinuities in the solar wind,J. Geo-
phys. Res., 89, 5395–5408, 1984.

Paschmann, G., Haaland, S., Sonnerup, B. U. O.,
Hasegawa, H., Georgescu, E., Klecker, B., Phan, T. D.,
Rme, H., and Vaivads, A., Characteristics of the near-
tail dawn magnetopause and boundary layer,Annal.
Geophysicae, p. 1481, 2005.

Robert, P., Dunlop, M. W., Roux, A., and Chanteur, G.,
Accuracy of current density determination, inAnal-
ysis Methods for Multi-Spacecraft Data, edited by
G. Paschmann and P. W. Daly, ISSI SR-001, p. 395,
ESA Publications Division, 1998.

Russell, C. T., Mellott, M. M., Smith, E. J., and King,
J. H., Multiple spacecraft observations of interplane-
tary shocks: Four spacecraft determination of shock
normals,J. Geophys. Res., 88, 4739, 1983.

Schwartz, S. J., Shock and discontinuity normals, mach
numbers, and related parameters, inAnalysis Methods
for Multi-Spacecraft Data, edited by G. Paschmann
and P. W. Daly, ISSI SR-001, p. 249, ESA Publications
Division, 1998.

Shen, C., Li, X., Dunlop, M., Liu, Z. X., Balogh, A.,
Baker, D. N., Hapgood, M., and Wang, X., Analyses
on the geometrical structure of magnetic field in the
current sheet based on Cluster measurements,J. Geo-
phys. Res., 108, 1168, 2003.

Shi, Q. Q., Shen, C., Dunlop, M. W., Pu, Z. Y., Zong,
Q.-G., , Liu, Z. X., and Lucek, E., Motion of observed
structures calculated from multi-point magnetic field
measurements: Application to Cluster,Geophys. Res.
Lett., p. submitted, 2005a.

Shi, Q. Q., Shen, C., Pu, Z. Y., Dunlop, M. W., Zong,
Q.-G., Zhang, H., Xiao, C. J., Liu, Z. X., and Balogh,
A., Dimensional analysis of observed structures using
multipoint magnetic field measurements: Application
to Cluster,Geophys. Res. Lett., 32, 12 105, 2005b.
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