

Cross Scale Teo	chnology Reference St	udy		reesa
Cross-sca	le TRS mission	n requirements	(II)	SCIENCE
 Programm ✓ Mission ✓ Technoless that Science data ✓ On-boar > Use (~10 	matics: n lifetime 3 – 5 years ology development and n 5 years (TRL 5 in 2 ta-rates (for compl d storage: > 1.5 Mbp of Hard-Disk Drive o bo Gbit per S/C)	zon	Cluster II	
Inter space E-scale Ion-scale Large scale	ecraft localization/. 0.25 ms 0.25 - 2 ms e 2 ms	<i>synchronization:</i> 125 m 1% of distance 1% of distance		
eesa	Planetary Exploration Studies Sec Science Payload & Advanced Cor	ction ncepts Office		Presentation February 27, 2007 Page 8

Cross Sca	le Technology Refere	ence Study						
Mass	analysis: La	aunch a	and tr	ansf	er			
 Lau 	inch by Soyuz-Fre	gat 2 (1b) f	from Kor	arou:				
>	Mass into GTO: 30	26 kg (TBC)			3 - Apogee raising with Fregat			
>	Effective mass into	GTO: 2430	kg	5-	Einel annee reizing			
(20% system margin, 110 kg adapter)								
Operational orbits of interest:								
>	\rightarrow Perigee: 1 Re + 500 km - 15 Re							
>	Apogee: 25 Re (25	Re – 50 Re)			2 - Parking orbit injection			
>	'Near equatorial '				1-Launch			
	Approximate dry n	nass in orbi	t (Isp = 32	25 s)				
	Orbit	Transfer	Space	Mass	- Trigar result			
		$\Delta V (m/s)$	debris	(kg)				
			ΔV		Masses quoted are inclusive possible transformabile propellant tanks and			
		1000	(III/3)	1550	propulsion system			
	$10 \text{ K}_{\text{E}} \times 25 \text{ K}_{\text{E}} \times 14$	1390	0	15/0	> Deployment and reconfiguration ΔV			
	$10 \text{ K}_{\text{E}} \times 25 \text{ K}_{\text{E}} \times 14^{\circ}$	1115	0	1713	not included in this table			
	(iunar resonances)							
	$4 \text{ K}_{\text{E}} \times 25 \text{ K}_{\text{E}} \times 14^{\circ}$	1005	185	1673				
	$2 \text{ R}_{\text{E}} \times 25 \text{ R}_{\text{E}} \times 14^{\circ}$	775	200	1790	Clearly, if mass-constrained			
Design of the second se	1.4 $R_E \times 25 R_E \times 14^{\circ}$	675	110	1900	$10 \times 25 R_E$ and $1.4 \times 25 R_E$			
	(2500 km)	Studies Cestia						
. 668	Planetary Exploration S Science Payload & Adv	studies Section vanced Concepts C	office					
					Presentation February 27, 2007 Page 10			

Cross Scale Technology Reference Study									
Orbit	al ana	lysis							JEILIVEE
Chara	cteristi	cs of or	bi	ts selecte	d for pr	elii	ninary n	ission analysis:	
Orbit par	ameters	Period (days)	Ti	me per orbit between 9 - 11 R _E	t Time tailbo per ye	in ox ar	Average tailbox time (h)	Remarks	
10 $R_E \times 25$ (max ΔV : 1	; R _E × 14 ° 1315 m/s)	4.3		9.8% (2.9 km/s)	8.0% (> 1.2 kr	5 n/s)	9 (0.6 - 16)	Most encounters (many away from apogee), at relatively high speeds	
$\frac{4 \text{ R}_{\text{E}} \times 25 \text{ R}_{\text{E}} \times 14^{\circ}}{(\text{max } \Delta \text{V: 1540 m/s})}$		3.2	4.6% (2.1 km/s)		6.4% (~0.8 kr	6.4% 11 (~0.8 km/s) (0.13 - 23)			
$\sim 1 \text{ R}_{\text{E}} \times 25$ (max ΔV : 1	R _E × 14° 260 m/s)	2.8		4.2% (1.2 km/s)	3.5% (~0.5 kr	n/s)	14 (1.1 - 33)	Fewest encounters, at relatively low speeds	
Perigee	krad	Max		Av. GS	Contact			Sun in Autu	mn
	(5 y and 4 mm Al	l eclips	se e	contact time	%	Su	n in Winter		
10 R _E	6	3.3 ł	1	14.5 h	47			Sur	n in Summe
4 R _E	70-90	0 5 h		13.6 h	48		/	+ · · · · · · · · · · · · · · · · · · ·	
$\sim 1 R_{\rm E}$	60	8 h		11.7 h	49	·			
000	Planeta Science	ry Exploration	Studi	es Section	X _{E0}		Sun in Spring	Baseline orbit	Y _{EC}
							P	resentation February 27, 2007	Page 12

Cross Scale Technology Reference Study	R esa
Mission architecture trade	SCIENCE
Launch with SF 2-1b from CSG. Initial orbit lower than GTO (20,000 km)	
Transfer to operational orbit by dispenser-like transfer vehicle• Reduction of mission operations complexity• Mass optimization (propulsion staging, constellation S/C design)• Scaleable design (operational orbit vs number or mass of S/C)• Payload accommodation (axial antenna)	
Operational orbit 1.4 ×25 R _E • Maximization of number of S/C (10 S/C in baseline orbit) • Space Debris policy	
<u>Identical spacecraft</u> • Cost optimization (design, AIV and Ops)	
 <u>Nearly identical payload</u> Identical P/L interfaces to S/C for a set of possible P/L configurations Requirements on P/L autonomy and reliability 	
<u>Communication architecture</u> Direct link of individual S/C to G/S	
Operations • Cost optimization (see also above) • Automated downlink • S/C autonomy/reliability vs operational complexity • S/C memory vs operational complexity ('data'-selection)	O O
	esentation February 27, 2007 Page 14

Cross Scale Technology	v Reference Study	reesa
S/C prelimit	nary design	SCIENCE
Key characteristi	cs of preliminary baseline:	
Number of S/C	10 (4 large, 4 medium, 2 small scale)	
Dimension	~1.5 m (Ø) × ~1 m (height)	
Spinning rate	20 – 40 rpm	
Total mass	145 – 160 kg (depending on scale)	Saab-Ericsson antenna (Herschel/Planck)
Dry mass (excl. P/L)	106 kg	(Herscher/Flanck)
Power	160 W	See
Communication	X-band, 10 W (RF) , omnidirectional, variable data-rate (up to 3 Mbps)	
On-board memory	256 Gbits SDRAM/DDRAM	and in the second
AOCS	Star mapper, sun sensors, bipropellant thrusters	Galileo Avionica
Max. P/L mass	42 kg (excl. S/C ranging)	Sun sensor (Cluster-II)
Max. P/L power	30 W (exc. S/C ranging)	
P/L / total dry S/C	10 - 30%(incl. S/C ranging)	
Key spacecraft > Identical S/C > Power (downlink) > Accommodation	t mass drivers k requirements, maximum P/L power) o f maximum P/L mass (42 kg)	TNO-TPD Star Mapper (Cluster-II)
	······································	Presentation February 27, 2007 Page 16

Launch	stack		e stoay	
Projected 2	mass bud	<u>lget:</u>		
Item	Number	Mass each (kg)	Remarks	Preliminary design
Large scale S/C	4	144	13 kg P/L	
Medium scale S/C	4	158	34 kg P/L + S/C ranging	
Small scale S/C	2	162	42 kg P/L + S/C ranging	
S/C total	10	1532		
Dispenser	1	515	Dry mass	
Propellant	1	1157	Only for transfer	
TOTAL		3204		
Launch capacity		3885	Into 20,000 km, adapter subtracted	
MARGIN		681	21% system level margin (20% required)	

Instrument		Locati	ion of instru	1 CL		
	e - scale #1	e - scale #2	ion scale #1	ion scale #2-4	Large scale	
DC Magnetometer	Р	Р	Р	Р	Р	K A M
AC Magnetometer	Q	Q	Q	Q	Q	
Wire boom antenna	KLMN	KLMN	KLMN	KLMN	-	
Axial antenna	0	0	-	-	-	
Electron ESA	EFGH	-	-	-	-	
Ion ESA	-	EFGH	-	-	-	
Electron/Ion ESA	ABCD	ABCD	CD	ABCD	А	
Ion composition	-	-	AB	-	-	
Hot plasma particle composition	-	-	-	EF	-	
Solid State Telescope	-	IJ	-	IJ	I	

G	ross Scale Technology Reference Study						
	Identified mission dri	vers	SCIENCE				
	Driver	Impacts					
	Operational orbit	Launch mass					
	Space debris mitigation	Launch mass, S/C design, mission lifetime					
	Large scale constellation (re)configuration	Propellant, S/C design, mission operations					
	Number of satellites	Launch mass, AIV, mission operations					
	Number of different satellites	AIV, mission operations					
	Payload mass + power	Launch mass					
	Instrument modes	Operations					
	On-board data storage	Launch mass, mission operations					
	Downlink rate	Communication system, power system, ground system					
	Identified technology	requirements					
	Technologies	Remarks					
	Small/medium scale synchronization	Real-time inter-S/C system for spinning satellite					
	On-board memory	Hard-Disk-Drive would allow large amount of on-board data storage					
	Low-resource X-band transponder and amplifier	Applicable for most of future (science) mission concepts					
	TO BE CONTINUED						
	Planetary Exploration Studies Section Science Payload & Advanced Concepts	Office	age 19				

