# **Hot Massive Stars: The Impact of HST**



Ground image at 0.6 arcsec resolution

WFPC-1 image (before servicing)

WFPC-2 image (after servicing)

#### **Paul Crowther**



### Outline

- Massive stars Introduction
- Stellar winds Metallicity dependent winds
- Ejecta nebulae Signatures of mass ejections
- Massive binaries Colliding winds
- Young star clusters A plethora of hot stars
- Starbursts knots Templates for high-*z* galaxies

# High Mass Stars

- o High mass stars (M<sub>init</sub>>8-9M<sub>☉</sub>), end their lives as core-collapse SN (<u>Smartt talk</u>)
- They possess high central pressures & temperatures & so burn much brighter than lower mass stars. For Solar-type stars L~M<sup>4.7</sup> while for high mass stars L~M<sup>2.5</sup>
- o A 25 M $_{\odot}$  star shines 50,000 times brighter than the Sun, so that it lives for only 1/2000 of the Solar lifetime (5Myr versus 11,000Myr for Sun)

### **Importance of massive stars**

- Massive stars are intrinsically luminous, so may be detected individually to large distances (e.g. Blue supergiants seen at Mpc distances);
- o O stars are the primary source of Lyman cont. photons in galaxies, & so enable the primary diagnostic of SFR (e.g. L(Hα), Kennicutt 1998);
- o Stellar winds are up to  $10^9$  more powerful than the Solar case  $\Rightarrow$  chemical enrichment, kinetic energy;
- In high-z star forming galaxies, signatures of massive stars are seen <u>directly</u> (UV continua, wind lines) & <u>indirectly</u> (ionized gas).

#### • Massive stars - Introduction

- Stellar winds Metallicity dependent winds
- Ejecta nebulae Signatures of mass ejections
- Massive binaries Colliding winds
- Young star clusters A plethora of hot stars
- Starbursts knots Templates for high-z galaxies



# **Metallicity dependent winds**

Winds predicted to be driven by radiation pressure through (CNO, Fe-peak) metal-lines (Puls et al. 2000; Vink et al. 2001). HST confirmed

expected weaker, slower winds in low metallicity SMC (e.g. Prinja & Crowther 1998)



# **VLT/FLAMES** survey

'Young' clusters'Old' clusters(<5 Myr)</td>(10-20 Myr)



#### **Mass-loss rates**



VLT/FLAMES survey provides dM/dt (Mokiem et al. 2006, 2007). Z-dependent OB star winds needed for evolutionary models.

#### • Massive stars - Introduction

- Stellar winds Metallicity dependent winds
- Ejecta nebulae Signatures of mass ejections
- Massive binaries Colliding winds
- Young star clusters A plethora of hot stars
- Starbursts knots Templates for high-*z* galaxies

# Nebulae

Recent mass-loss history of Wolf-Rayet star WR124 revealed by ejecta nebula (Grosdidier et al 1998). **Radial density** distribution of nebula provides wind structure & enables photo-ionization models of central star (Crowther et al. 1999).



Nebula M1-67 around Star WR124HST • WFPC2PRC98-38 • STScl OPO • November 5, 1998Y. Grosdidier and A. Moffat (University of Montreal) and NASA





In addition to continuous winds, some blue supergiants occasionally undergo violent eruptions



10, 1996

MN), NASA

HST · WFPC2





η Car `erupted' in 19th Century, becoming 2nd brightest star in sky, forming the Homunculus, a dusty reflection nebula  $(10 M_{o}?)$ illuminated by the star.

HST/WFPC2 image (50mas = 115AU res) shows the expansion from 4/94 - 9/95 (Morse et al. 1998). A physical mechanism remains unclear (see e.g. Smith & Townsend 2007)

### Homunculus



## Central star of y Carinae



Recent effort has focused upon nature of central star, apparently a binary (5.5yr period). STIS 0.1x0.1" longslit spectrum of central star reveals extreme parameters of L=5x10<sup>6</sup> L<sub>•</sub>  $dM/dt=10^{-3} M_{\odot}/yr$ (Hillier et al. 2001)



NASA and R. Kirshner (Harvard-Smithsonian Center for Astrophysics)

STScI-PRC04-09b

#### • Massive stars - Introduction

- Stellar winds Metallicity dependent winds
- Ejecta nebulae Signatures of mass ejections
- Massive binaries Colliding winds
- Young star clusters A plethora of hot stars
- Starbursts knots Templates for high-*z* galaxies





Positions of stars established by WFPC2 (Niemela et al. 1998) enabling their relative wind strengths.

### New massive binaries

FGS enables searches for massive binaries in parameter space between spectroscopic (weeks) & astrometric (centuries) techniques.

Survey of 23 OB stars in Carina revealed 5 new binaries, including an early O dwarf companion to HD93129A (prototype O2 supergiant), separated by only 55 mas (137AU). Later confirmed by detection of non-thermal radio emission.



Nelan et al. (2004)



# To date, the 3.7day eclipsing binary system WR20a (2 x WN6) hosts the highest masses ( $82M_{\odot}$ , $83 M_{\odot}$ ),



#### • Massive stars - Introduction

- Stellar winds Metallicity dependent winds
- Ejecta nebulae Signatures of mass ejections
- Massive binaries Colliding winds
- Young star clusters A plethora of hot stars
- Starbursts knots Templates for high-z galaxies

### Spatially resolved clusters Historically R136a,

the ionizing cluster of 30 Doradus in the LMC was considered as a potential supermassive star.

Weigelt & Baier(1985) first resolved R136a into multiple components using speckle imaging.





# **A plethora of early O stars**



HST/FOS (Massey & Hunter 1998) spectroscopy revealed a multitude of early O stars in R136, indicating youth (1-2 Myr) & high individual stellar masses (>120  $M_{\odot}$ ). Total stellar mass of R136 probably exceeds  $5 \times 10^4 M_{\odot}$ 



#### 30 Doradus Nebula Details HST • WFPC2 • NICMOS PRC99-33b • STScl OPO • N. Walborn (STScl), R. Barbá (La Plata Observatory) and NASA

### **NGC 3603**

6

р

С

HST also spatially resolved the Milky Way cluster NGC 3603 (Brandner et al. 1997), again revealing many early O stars (Drissen et al. 1993).

Central cluster comparable to R136a in 30 Doradus within ~1pc (Crowther & Dessart 1998).

#### Arches cluster



### Westerlund 1

Westerlund 1 (Wd1) is a highly reddened ( $A_v$ ~10 mag) young, compact Galactic cluster.

Discovery of Wolf-Rayet stars, Luminous Blue Variables, yellow hypergiants, red supergiants at ESO suggest Wd1 represents a very high mass cluster.



5 arcmin (7pc @ 4.5kpc)



NTT imaging of stars suggests mass of 6 x 10<sup>4</sup> (Brandner et al agreement wit 10<sup>4</sup> M<sub>o</sub> from V spectroscopy ( Tacconi-Garma

NTT/SOFI survey reveals 24 WR stars, from which  $\tau$ ~5Myr obtained (Crowther et al. 2006).



# NGC 604 in M33



# NGC 1313

WR population of giant HII regions in NGC 1313 (4Mpc), is within reach of VLT/FORS (Hadfield & Crowther 2007 HST/ACS invaluable in disentangling stellar content, reminiscent of NGC 604 in M33 (Drissen et al. 1993).



30'' (600pc)

#### • Massive stars - Introduction

- Stellar winds Metallicity dependent winds
- Ejecta nebulae Signatures of mass ejections
- Massive binaries Colliding winds
- Young star clusters A plethora of hot stars
- Starbursts knots Templates for high-*z* galaxies





For NGC3125-A1 cluster ( $0.4Z_{\odot}$ ), UV spectral synthesis models imply 4Myr ( $2x10^5 M_{\odot}$ ), based on Magellanic Cloud template OB stars from HST (Hadfield & Crowther 2006).



STIS spectroscopy of clusters within HII galaxy IZw18 (~1/30  $Z_{\odot}$  Aloisi talk) reveals WR signatures (Brown et al. 2002; Crowther & Hadfield 2006).



#### Brown et al. 2002

# Lyman Break galaxies



Composite Keck rest-frame UV spectrum of 811 *z*~3 Lyman Break galaxies (Shapley et al 2003) includes spectral O & WR signatures. <u>Wiklind talk</u>

### **MS1512-cB58**

Lensed Lyman break  $^{13}$ galaxy MS1512-cB58  $(z\sim2.7)$ 

Pettini et al. (2003) were only able to reproduce its restframe UV spectrum with *Magellanic Cloud* templates rather than *Galactic* OB stars.



Low metallicity of MS1512-cB58 from wind lines is in agreement with ISM techniques (Pettini et al. 2002)

### Summary

#### • <u>UV sensitivity:</u>

- •UV stellar signatures of Magellanic Cloud OB stars critical to Z-dependent winds;
- Metal-poor hot star templates of application to high-z star forming galaxies
- <u>High spatial resolution:</u>
  - •Stellar ejecta associated with hot massive stars;
  - •Resolved stellar populations in Local Group massive clusters;
  - •Young star clusters in more distant galaxies



GRAND HYATT ' KAUAI ' DECEMBER 10-14, 2007

- Atmospheres of massive stars;
- Physics & evolution of massive stars;
- Massive stellar populations in the nearby Universe;
- Hydrodynamics & feedback from massive stars in galaxy evolution;
- Massive stars as probes of the early Universe
  Contact: <u>Paul.Crowther@sheffield.ac.uk</u>