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e Early- and late-type galaxies
e E/SO galaxies

® Bulges of spiral galaxies

e Emission-line gas :

e Central black holes

® [he Future
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Elliptical Galaxies
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ACTIVITY
® Some galaxies contain ‘active nucleus:
— Radio jets, X-rays, optical spike P
e Cause: supermassive black hole s

e Most galaxies active in the past

e Black hole must still be there / OPTICAL

— most normal galaxies have
(inactive) central black hole
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e Black hole influences galaxy ©-
structure & evolution




Galaxy Formation and Evolution

e Galaxies form by hierarchical accretion/merging
— Matter clumps through gravitation
— Primordial gas starts forming first stars "' ‘-"f
— Stars produce heavier elements .

— Subsequent generations of stars
contain more metals

e Galaxy encounters still occur
— Deformation, stripping, merging

e Black hole also influences evolution
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Observational Approaches

-

e Study very distant galaxies
— Observe evolution (far away = long ago)
— ODbjects faint and small: little information

e Study nearby galaxies
— Light not resolved in individual stars

— ODbjects large and bright: internal structure -‘,

— |nfer evolution through archaeology

e Study resolved stellar populations
— Ages, metallicities and motions of stars

— Archaeology of Milky Way (and nearest
neighbors)
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HST and E/SO galaxies

e Giant and normal E/SOs
— Distinct central luminosity profiles -
— Cores, cusps, and central dips

e Nuclear disks (gas/dust/stars)

e STIS spectroscopy = black
hole masses

e Nuclear and global properties ’
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Structure of E/SO Galaxies

e Oblate fast rotators (E & SO)
— High specific angular momentum
— Embedded stellar disk
— Can be strongly anisotropic

— Generally steep luminosity cusp

e Weakly triaxial slow rotators (E)

— Some central rotation, but negligible
specific angular momentum

— Not necessarily strongly anisotropic
— Generally shallow luminesity cusp

Slow rotator (NGC 4458)
Emsellem et al 2007, Cappellari et al 2007, MNRAS, and! Falcon-Barroso talk



Fast Rotators

—_

—

T

o

e e =
'

e Stellar kinematics resembles that of disk
e Embedded in nearlysstationary spheroid/bulge

.



Kinematic structure on all scales

NGC 4382 McDermid et al., 2006, MNRAS, 373, 906

e SAURON: global kinematics and line-strengths
e OASIS: spatial resolution: zoom-in on nucleus
e Allows study of orbital structure near central BH
e STIS: even sharper, but iIncomplete view



= NICMOS

Barred Spiral Galaxy NGC 1365 | HST - WFPC2 « NICMOS
NASA and M. Carollo (Columbia University) * STScl-PRCS9-34a




Structure oft Smallest Bulges

e HST revealed large nuclear
complexity in late-type spirals

e Many ~exponential stellar
density profiles

e [hese bulges’ may be disks (e.q.
Kormendy 1993)

e Many have nuclear star cluster

e Formation mechanism unclear

Carollo et al. 1997-2007; BokerVan derMarel et al.



Velocity dispersion drops

V-band Flux [OIII/HP O [stars]
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e ~50% of Sa-Sc spirals: central minimum ini c
e [[hese bulges' are central disks

e Range of star formation histories
Falcon-Barroso et al. 2006; Ganda et al. 2006, Peletier et al. 2007, MNRAS



Nature of Bulges

e Bulges seem to be two component systems
— Slow-rotating, spheroidal, R"#, old
— Fast-rotating, disk-like, exponential, star forming

e \When disk-like component dominates
— Exponential profile
— Velocity dispersion drop

e \/ariety of star formation histories
— HST multi-color studies (WFPC2/NICMOS/ACS Carollo et al. 2007)
— SAURON line strength; measurements



Tonized Gas in E/SOs

e >/5% of E/SOs have extended emission-line gas
— Narrow-band imaging  Macchetto et al. 1996, AAS, 120, 463
— SAURON spectroscopy Sarzi et al. 2006, MNRAS, 366, 1151
— Detection rate: S0: 83%, E: 66%
— Drops to 55% in Virgo cluster (3/9 E’s)

e Gas distribution and kinematics Is diverse
— Includes non-axisymmetric motions
— Gas origin cannot be purely external or internal

e Wide range of [Olll}/Hp among and within galaxies



Some Examples

NGC 2768 hy NGC 2974 Q NGC 4278 NGC 4526 ¥~
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Nuclear Ionized Gas

e Prominent in active nuclel and bulges

— ~20% have regular dust disks

— Ho, [NII] kinematics (FOS, FOC, STIS) resolves region
where black hole dominates, but is often irregular

e HST observed over 100 objects
— Up to ~100 Mpc distance
— ~20% ~fitted by circular rotation = black hole masses




Velocity Profiles
in the M87 Core

Model: central mass 3.2x107 solar masses
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Central Gas Disk_ in NGC 3379
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Shapiro et al. 2006, MNRAS, 370, 559 | ALY Rodius (10-15 k)
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The Black Hole in NGC 3379 (El)

e Vi, from stellar motions and from gas kinematics

structure Gas Velocity

e Regular central gas disk
— Three parallel STIS slits
— Gas motions not circular
— Twisted model consistent

e Stellar kinematics

— SAURON: low spatial resolution: upper limit on Mg,
— OASIS: lower limit on Mg, insufficient field of view.
— Combination: FOV and resolution: acecurate Vg,

® [\lasses consistent
Shapiro et al. 2006, MNRAS, 370, 559



The Black Hole in NGC 821 (E6)

e Different data sets
— SAURON + STIS
— Long-slit + STIS

e Independent codes

— Nukers, Valluri &
Leiden group

— Different orbit sampling
— Different regularization

Gebhardt
McDermid

e Good agreement

— Mgy, statistical error
smaller when 21D
kinematics used

McDermid et al. 2007



Nuclear Orbital Structure
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Adiabatic black hole growth

Binary black hole mergers
expected to result in tangentially
plased orbits inside core radius

Quinlani & Herngquist 1997



Observed Orbital Distributions

NGC 4486

e
Il orbits

05} ' 0_5:_ \m - Tangential

L Nec 821

200

IRl orbits

R {arcsec) ' R {arcsec)
e Nearly isotropic velocity distribution at large radii
e |sotropic (N821) or radial (M87) motion inside core
e Similar results for other giant ellipticals (incl N3379)
e Not formed by binary-black hole merger?
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Mz, from Stellar Kinematics

e BH masses for ~25 E/S0O galaxies and bulges
— Based on one STIS slit, and ~2 ground-based slits

— Mg, accuracy can be improved by using integral-fiela
data; this also provides accurate M/L's and inclinations

— Possible for all nearby E/SOs in HST/STIS archive

e Limitations
— Only for bright nearby nuclei
— Modest spatial resolution at Virgo (0.2" slit)

— Not enoughi S/N for core galaxies in Virgo: these are
targets for AO-assisted |IFU’s on 8m groundbased
telescopes (e.g. SINFONI on VLT)



Black Hole Demographics

e Ellipticals

— Be careful with masses
from gas kinematics

— Need stellar kinematics
for core galaxies (8m)
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e Spirals

— Not many masses,
especially < 4x10” Mg

— |Late type disks: no BH?

20 40 60 80100 200 400 600

e Scatter (i =
— Observational errors Ferrarese & Ford 2005
— Systematics (triaxiality, asymmetries)
— Related to merger history:?




Galaxies without Black Holes

o M 3 3 an d N G C 2 O 5 STIS kinematics and BH models for NGC 205

— Central star cluster
— No AGN

— Strong upper limit on
pblack hole mass

e If they have a BH,
then its mass is well
below the (Mg.,0)
relation

Valluri et al. 2005, Apd 628, 137



The Future

e Increased resolution needed:
— Zooming in on nuclel & more distant objects

e Adaptive optics
— Natural guide star: few objects
— |Increased sky coverage with laser

e Nuclei

— |ntegral-field spectroscopy to constrain
orbital structure near black hole

— Infra-red wavelengths: probe dusty nuclei
(SINFONI/NIFS/OSIRIS)

— Optical wavelengths: stellar populations
(OASIS/GMOS/MUSE)

WHTI

Gemini N

VLT






Cen A wu’rh SINFONI on VLT
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Haring-Neumayer et al. 2007
® H, emission at 2.12 um: regular rotation

e Stellar kinematics from CO bandheaad
e AO assisted spectroscopy: spatial reselution 0712
e EXxcellent constraintston Mgy, gas and stars



The Black Hole in Cen A

e Gas disk twisted & warped
— Tilted ring model: excellent fit
— Include velocity dispersion

o My, = 4.5 x 107 Mg

e Same value found for
dynamical model that fits
stellar kinematics

2.0x107  4.0x107  6.0x107 8.0x107 1.0x10% 2x108

Haring-Neumayer et al. 2007 Mo [1,]




Conclusions

e HST transformed our understanding ofi spheroids
and bulges
— Cores, cusps, gas, nuclear star clusters, black holes
— Triggered much follow-up ground-based work

o V/LT*" ALMA, JWST, and ELT to come

Thank you Duccioe!
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