Evolution of galaxies from mass selected samples

ACS GTO team (Holden, vdWel, Ford, Illingworth et al)

FIRES Survey: Labbe, Wuyts, Kriek, Rudnick, Forster Schreiber, van Dokkum, Moorwood, Rix, Rottgering, Trujillo, van der Werf, Illingworth, van Starkenburg, MF, MUSYC near-IR survey: van Dokkum (PI), Gawiser (co-PI), Lira (co-PI), Urry, Maza,Mendez,Altmann, Blanc, Francke,Barrientos, Infante, Urry, Quadri, Toft, Marchesini, Brammer,Taylor,MF

Kriek

Our goal is: study galaxy evolution

 This requires a proper census of the universe !

2 case studies

 Structure of galaxies at z=1 as a function of environment

Evolution of Galaxies at z=2-3

Evolution Morphology-density relation (Dressler et al 1997)

Low redshift

Z=0.5

Extending to z=0.8

Conclusion

- Hardly any evolution in Morphology density relation for mass selected sample (Mstar >10**10.6)
- How about the field ?

Conclusion

- Morphology-density relation does not evolve strongly
- But galaxies evolve in density, mass -> they evolve along this relation

Z=0-1.2

z=2-20

	-2.233	x=2.267	x=2.419
		15.4	
hd2_1881_0374	6d2_0725_1818	Lid2_2030_0287	hd2_0624_1688
z=2.931	z=2.980	z=2.991	x=3.160
and the			
644_0367_0266	hd4_2030_0851	trd 2_0434_1377	hd2_1410_0259
t Rt.E=x	z=3.233	x=3.368	x=3.430
hd2_1359_1816	1.13_0408_0684	hd2_0705_1366	bd2_0698_1297
ha4_1994_1406	hd4_0818_1037	hd2_1739_1258	hd4_1341_0299

Do we have mass-selected sample at z> 2 ?

Here: select z>2 galaxies in restframe optical

- Requires deep J,H,K-band imaging (up to 30hours with VLT)
 - Main advantage:
- Selection similar to z<1
- Closer to a mass selected sample Main disadvantage:
- Use photometric redshifts

Available Surveys:

FIRES: HDF-South + MS1054 2.5'x2.5' 5'x5' VLT GOODS: CDF-South 10'x15' VLT

 MUSYC near-IR: 10'x18' + 10'x10' CTIO-4m

Restframe U-V color distribution

Distant Red Galaxies at z > 2: J - K > 2.3

Age=1.5Gyr, $A_v = 2.5$

DRG

Average SED of Lyman Break

Restframe U-V color distribution

Conclusion

- At massive end, red galaxies dominate the galaxy population at z=2-3 (~77% by mass)
- The range in luminosities and colors is very large !
 - Median J-K = 2.49
 - Median R = 25.9!
- (van Dokkum et al 2006)

Why are these galaxies red?

- Quiescent ? [low star formation]
- Young and Dusty ? [implies high SFRs]

Difficult to distinguish without additional information

Obtain Near-IR spectroscopy

- Hard long integration times, low multiplex
- Kriek et al.: obtained spectra of 36 galaxies with GNIRS on Gemini
- K band selected much closer to mass selection
- Unique: J,H,K in one shot !

2 hour exposure

Analyze galaxies with 2<z<2.7

- 9 out of 20 no H-alpha emission line
- 2sigma upper limit EQW around 10 Angstrom
- Specific Star Formation Rate
 SFR/M < 10⁻¹⁰ 10⁻¹¹ /yr

Several indicators show

Significant fraction (40 % +- 10%) of quiescent galaxies

Others star forming with reasonably high star formation rates

General size evolution size as function of L, M, normalized to Sloan

Trujillo et al 06

Size as function of I-K and Mass

Structure of red galaxies

Nicmos imaging of HDF-South

Zirm et al 06

Quiescent galaxies

- Low specific SFRs
- Very compact and dense -> formed very early ? (z=5 ?)

Conclusions

- Mass selected samples are required
- Massive galaxies show a wide range in properties to z=3
- strong evolution in number density
 - -> galaxies DO evolve

To do:

- Go deeper, wider
 WF3, VISTA, JWST
- Get spectroscopy for large samples
 - 8-10m ? ALMA, JWST
- Get real masses
 8-10m ? ALMA, JWST

end