IXO mission concept

1 – Introduction

- 2 IXO mission requirements
- 3 IXO mission analysis
- 4 IXO configuration
- 5 IXO instrument module
- 6 IXO service module
- 7 IXO mirror assembly
- 8 Options
- 9 Conclusion

IXO mission terms of reference

-Input elements to IXO configuration include:

1- A single large X-ray mirror assembly compatible with both pore optics and slumped glass technology

2 - An extensible optical bench to reach F=20 to 25m + ways to maximise Aeff above 6 keV

3 - Instrument include a wide field imager, a high resolution non-dispersive spectrometer, an X-ray grating spectrometer + instruments with modest resources

4 - The IXO concept must be compatible with both Ariane V and Atlas V 551 launchers.

IXO CDF objectives

1 - Mirror assembly accommodation concept:

- pore optics technology and compatibility with slumped glass technology

2 - Design service module:

- Ariane V and compatibility with ATLAS V launcher

3 - Design instrument support platform: - WFI+HXI, CSI, XGS (CAT), HTRS, XPOL

4 - Programmatic, organisation and possible ESA contributions (< 650 MEuros): two main scenarios:

ESA delivers the IXO mirror assembly NASA delivers the IXO mirror assembly

5 - Options

Focal length extension (> 20 m)

Retractable transmission grating concept

(+ estimate X-ray events time stamping accuracy)

🕐 esa 🦽 🗛 🐼

Coordination Group meeting November 20, 2008

IXO mission concept

1 – Introduction

2 – IXO mission requirements

- 3 IXO mission analysis
- 4 IXO configuration
- 5 IXO instrument module
- 6 IXO service module
- 7 IXO mirror assembly
- 8 Options
- 9 Conclusion

IXO mission requirements: scientific performance

Mirror Effective Area	3 m ² @1.25 keV	Black hole evolution, large scale structure, cosmic feedback, EOS
Effective Area	~1 m ² @ 6 keV	Strong gravity, EOS
	~350 cm ² @ 30 keV	Cosmic acceleration, strong gravity
Spectral Resolution	2.5 eV from 0.3 - 7.0 keV	Black Hole evolution, Large scale structure
	$E/\Delta E > 1250$ from 0.3–1 keV with area >1,000 cm ² for point sources	Missing baryons using tens of background AGN
Angular Resolution	≤5 arc sec HPD (0.3 – 10 keV)	Large scale structure, cosmic feedback, black hole evolution, missing baryons
	≤15 arc sec HPD (10 - 40 keV)	Black hole evolution
Field of View	2 x 2 arc min with $\Delta E < 2.5 \text{ eV}$	Galaxy Clusters, cosmic feedback
	5 x 5 arc min with $\Delta E < 10 \text{ eV}$	Galaxy Clusters
	>14 x 14 arc min with $\Delta E < 150 \text{ eV}$ (18 arcmin at 20 m focal length)	Black hole evolution, galaxy clusters
Count Rate	1 Crab with < 10% deadtime ΔE < 200 eV	Strong gravity, EOS
esa 🖽 🗛	Coordination Group meeting November 20, 2008	

IXO mission requirements: launcher and orbit

- Launcher: Ariane-5 ECA & Atlas 5
 - Launcher performance Ariane 5 (excl. adapter)≈ 6170 Kg
 - Launcher performance Atlas 5 (excl. adapter) \approx 6108 Kg
- Target Orbit: direct launch into L2 (similar ΔV budget for both launchers)
- 5 Year Mission (with consumables sized for a 10 years mission)
- Launch ≈ 2020

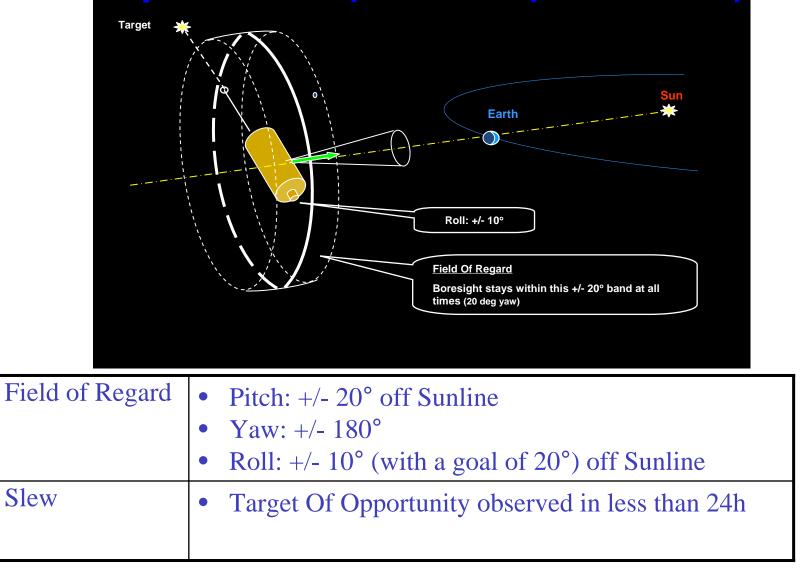
Preliminary IXO pointing and optical bench stability requirements

Preliminary image quality error budget (HEW on-axis at 1 keV):		
- Mirror module manufacturing errors:	4.30 arcsec	
- Optical design (conical approx.~ 3 arcsec)		
- Mirror figuring errors:		
- Mirror mid-frequencies errors & surface roughness:		
- Mirror plate alignment/confocality:		
-Mirror assembly system errors:	1.20 arcsec	
- Assembly and integration		
- 1 g release		
- Thermal environment		
- Other (e.g. moisture release)		
- S/C pointing and optical bench distorsions:	2.00 arcsec	
- Events relative lateral measurement accuracy		
- Absolute longitudinal displacement errors		
- Margin: (including PSF sampling/detector pixel size)	1.00 arcsec	
Total (assuming RSS summation):	5.00 arcsec	

Preliminary IXO pointing and optical bench stability requirements Low f MA pointing requirements (MA ref. frame vs absolute ref. frame):

- Mirror assembly Absolute Pointing Error < 5 arcsec
- Mirror assembly Absolute Pointing Measurement Accuracy < 0.7 arcsec (on ground reconstruction)

Low f detector positioning errors (detector ref. frame vs MA ref. frame):


- Detector absolute position measurement error (including uncalibrated OB static and low f distorsion) < 0.07 mm
- Detector defocussing < 0.65 mm
- Static and low f optical bench distorsions + detector lateral positioning errors < 0.5 mm (maximum amplitude without pointing correction or calibration accuracy with pointing correction)

High f MA pointing error + high f OB distorsions < 110 µm (or 1.1 arcsec)

Torsional requirements: < 0.05 degree (XGS)

IXO mission requirements: sky accessibility and slew requirements

IXO mission requirements: observation scenario

Number of Targets:

- 210 targets in 1 year.
- 77 observations were made of the same target with >3 instruments
- 34 targets required repeated (typically 4) observations spread over time.
- 7 targets needed mosaicing of between 2 x 2 and 10 x 10 pointings to cover 1 sq degree.

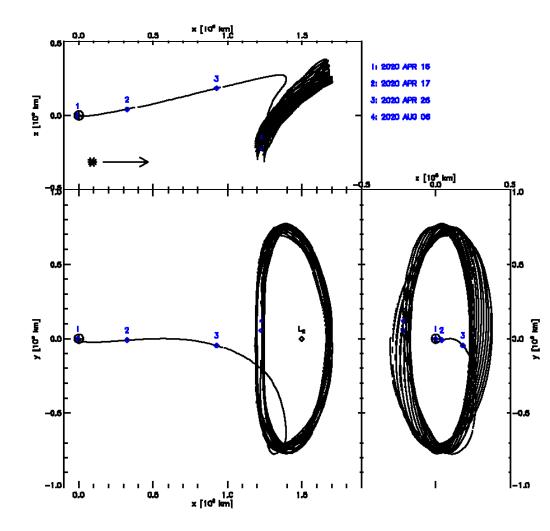
Exposure Times

- Minimum Exposure: 10 ks
- Maximum Exposure: 1000 ks
- Mean Exposure: 70.4 ks

Instrument Utilisation

- XGS: assumed to be always operating.
- WFI: 48%
- NFI: 31%
- HTRS: 14%
- XPOL: 5%
- HXC: 1 % (as prime, assumed to be behind WFI)

\rightarrow 183 instrument exchange/year

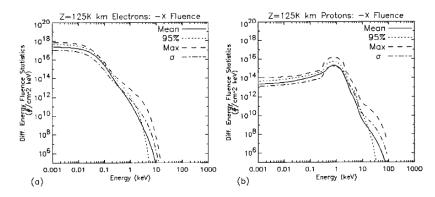


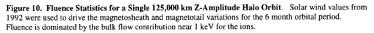
IXO mission concept

- 1 Introduction
- 2 IXO mission requirements
- **3 IXO mission analysis**
- 4 IXO configuration
- 5 IXO instrument module
- 6 IXO service module
- 7 IXO mirror assembly
- 8 Options
- 9-Conclusion

IXO reference trajectory and Δv **Budget**

manoeuvre	$\Delta v [ms^{-1}]$
perigee velocity correction	28.0
launcher dispersion correction	34.0
transfer	3.0
orbit insertion	0.0
station keeping (10y)	20.0
de-orbit	0.0
wheel off-loading correction	7.7
total	85.0
margin (5%)	4.63
thruster mounting 1/cos(28°)	11.7
total ∆v budget	109.4


L2 particle (protons) environment

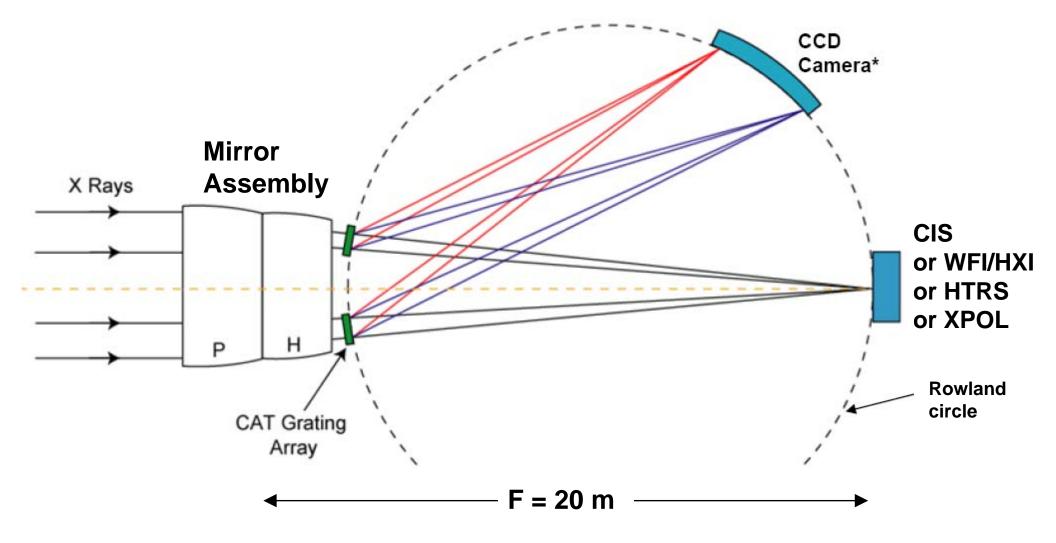

- LRAD – now L2CPE: NASA developed statistical model of plasma densities and temperatures in L2 (Solar wind, Plasma sheet, Magnetosheath, Lobe and Mantle)

- Blackwell et al [2000], using LRAD, looked at the effect of L2 halo orbit amplitude on the flux statistics for electrons and protons.

 \rightarrow No change in flux of protons from 10keV to 100keV depending on halo orbit amplitude,

 \rightarrow a consideration of Larmor radius for higher energy particles suggests that there should be no dependence on orbit amplitude for the higher energy protons too.

Table 1.	125,000 km Z-Amplitude Halo Orbit Satellite Location Se	ummary
----------	---	--------


Number of Monte Carlo Runs =	1000	Total problem duration= 180.00000 days	
Fraction of halo orbit spent inside	individual regio	ns:	
Solar Wind Region : 12.77 %	(22.99 days)	N/S Lobe Region : 0.00 % (0.00 days)	
Plasma Sheet Region : 3.22 %	(5.80 days)	Plasma Mantle Region: 5.91 % (10.63 days)	
Magnetosheath Region: 78.11	% (140.60 days)) .	

IXO mission concept

- 1 Introduction
- 2 IXO mission requirements
- 3 IXO mission analysis
- **4 IXO configuration**
- 5 IXO instrument module
- 6 IXO service module
- 7 IXO mirror assembly
- 8 Options
- 9 Conclusion

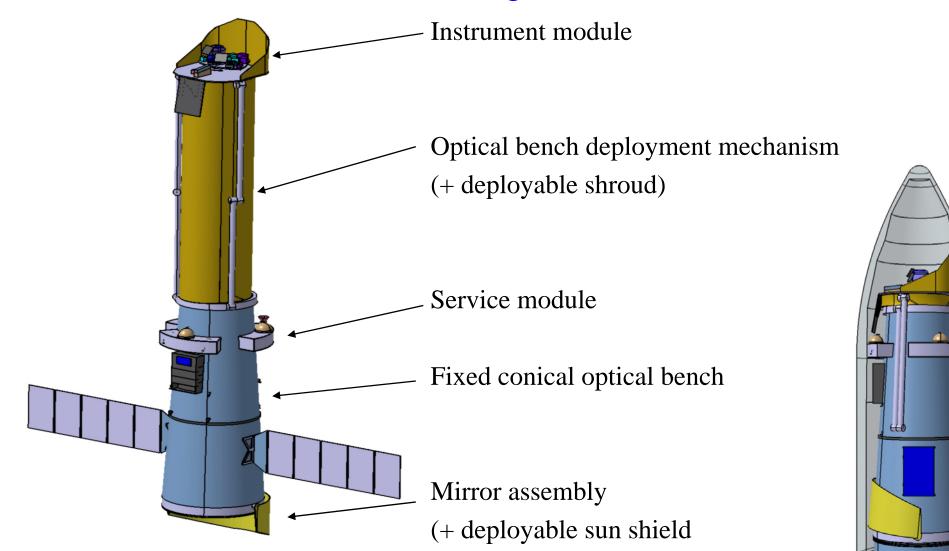
IXO configuration

Coordination Group meeting November 20, 2008

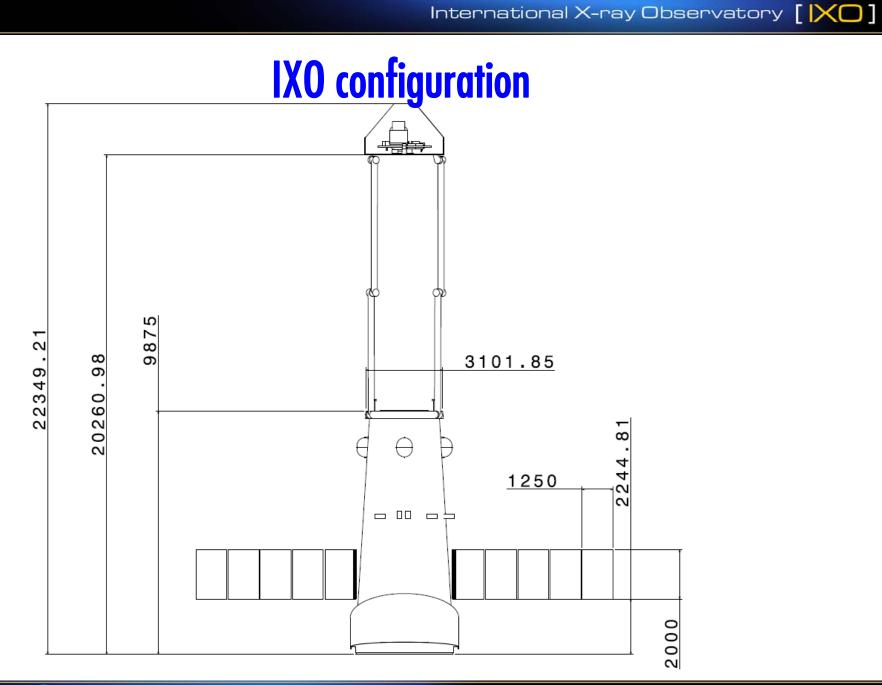
IXO configuration

X-ray telescope with high energy response → large telescope focal length → deployable optical bench

During science operation,

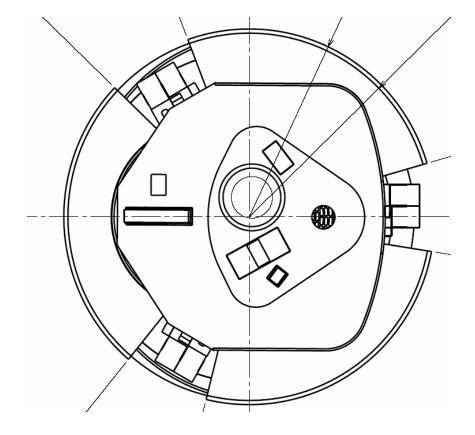

- the grating spectrometer is always operating
- any of the other 4 instruments can be placed at the focus of the X-ray telescope.

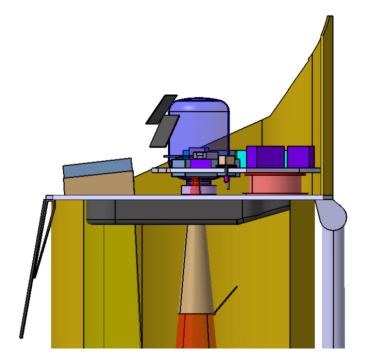
 \rightarrow instrument exchange mechanism


The instruments shall be protected from particle background and stray-light → cylindrical baffles and/or (deployable) shroud

IXO configuration

🕑 esa 🦽 🗛

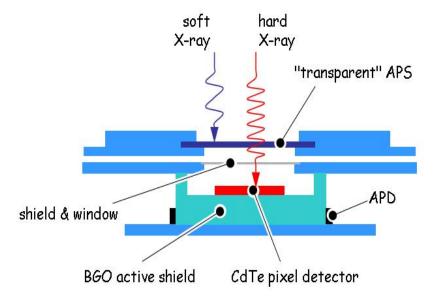

Coordination Group meeting November 20, 2008


IXO mission concept

- 1 Introduction
- 2 IXO mission requirements
- 3 IXO mission analysis
- 4 IXO configuration
- **5 IXO instrument module**
- 6 IXO service module
- 7 IXO mirror assembly
- 8 Options
- 9-Conclusion

IXO instrument module: configuration

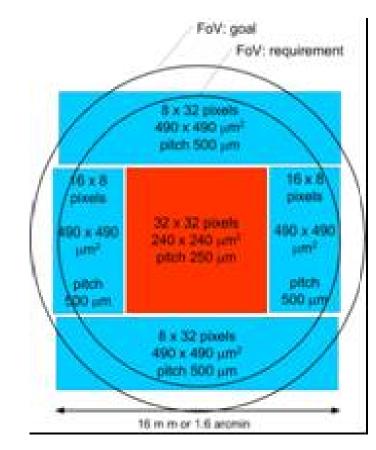
Coordination Group meeting November 20, 2008


IXO instrument module: WFI+HXI

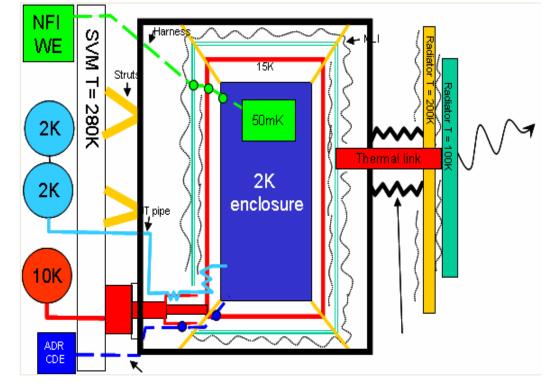
WFI specifications:

- Imaging spectrometer 0.1-15keV
- Single Si chip array of 1024x1024 active pixels
- Pixel Pitch=100µm
- Area = $102 \times 102 \text{ mm}^2 = 17.5^{\circ} \times 17.5^{\circ}$
- 1 detector head (incl FW&FEE) & 2 HPP boxes on MIP
- 3 electronics boxes on FIP

HXI specifications:


- 1 detector head & FEE + Analog electronics on MIP
- 2 Digital unit & PSU electronic boxes on FIP
- FOV = 12' circular

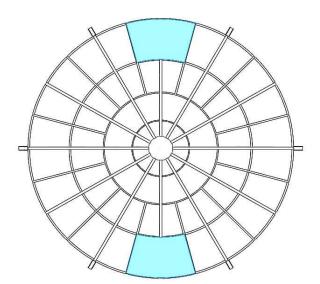
IXO instrument module: CIS

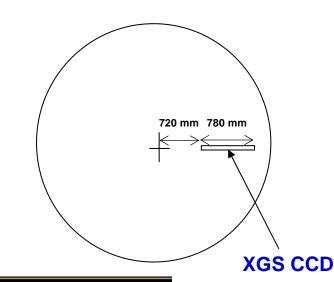

- Cryogenic imaging spectrometer based on TES
- Energy range = 0.1-10keV
- Inner array: 40x40 pixels (300x300 μ m²), Δ E<2.5eV
- Outer array: 52x52 pixels (600x600 μ m²), Δ E<10eV
- Total 2176 read-out channels
- $T_{det} = 100 \text{mK} \pm 1 \mu \text{K}$ (50 mK cooler I/F)
- $FoV = 5.4 \ge 5.4 \text{ arcmin}$
- CDF baseline: most demanding combination of European (NFI) and US (XMS) concepts
- Assumed US detector and Europe cooler
- Detector head + SQUIDs @ 50mK
- FEE + DE (RT) close to cryostat (on MIP)
- Event Processor, PSU, cooler controls @ RT on FIP

IXO instrument module: CIS

- 280K cryostat + 100K radiator
- 2 stage 10-15K Stirling cooler (2x)
- 2-2.5K JT cooler (4x)
- (300mK sorption cooler + 50mK ADR)
- Redundant pre-cooler concept
- Relies on passive shield cooling
- Cryostat @ RT -> simplifies I/F and testing

IXO instrument module: XGS

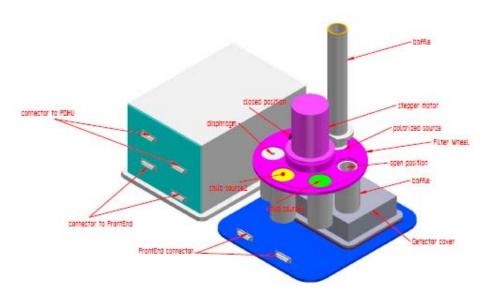

-> Instrument definition to be improved: PDD shall be updated with an XGS instrument description and interface requirement specification.


Grating box assumption:

- Selected 1.1 m < R < 1.9 m and two sectors of 22.5° each.
- Box dimensions ~70 x 80cm structure support Al ~2cm deep (silicon grating only 3 microns thick)
- 2.4 kg incl 20% margin each box
- No attempt to address mounting to mirror, unit calibration, temperature constraints etc . . .

XGS camera assumptions:

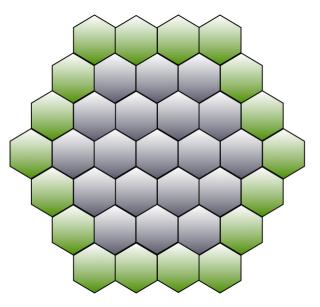
- Mass ~ 20.4kg incl margins.
- Power ~65 W incl margin + 3W CCD thermal control
- No translation stage needed at 3 σ error level
- Refocussing mechanism needed



Coordination Group meeting November 20, 2008

IXO instrument module: XPOL

X-ray polarimeter based on scintillating gas cell

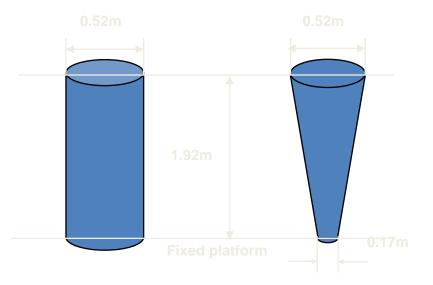

- Track detection gives polarization angle
- $300 \times 352 \text{ pixels} (50 \times 43.3 \mu \text{m}^2) = 15.24 \times 15 \text{mm}^2$ FOV = 2.6'x2.6'
- E=2-10keV, E/ΔE=6
- $T_{det} = 283K \pm 2K$
- Room temp electronics
- 1 detector head + FEE & 1 back-end box all on MIP
- Harness: power & SpW

IXO instrument module: HTRS

- High time resolution spectrometer: ~1Mcps, 10us resolution
- 0.5-20keV
- based on 37 Silicon drift detector diodes placed in defocused beam (182mm)
- $T_{det} = 253K \pm 1K [-40C, +35C]$
- 1 detector head + FEE & 1 electronic box on MIP
- Harness: power & SpW
- The instrument is non-imaging
- Multiple pixels are used for distributing the photons and achieving higher count-rate capability

IXO instrument module: resources summary

Instrument	Power	Mass	Data rate	Comment
WFI	280 W	90 kg	<1Mbps	
HXI	43 W	31 kg	<1Mbps	
XPOL	44 W	15 kg	<1Mbps	
HTRS	113 W	31 kg	MM	
NFI	521 W 576 W recycling	243 kg	<1.7Mbps	Incl cryogenics & 100K radiator
XGS	68 W	52 kg	158 kbps 1.8Mbps peak	Incl gratings & baffle
Total	993 W	462 kg		Power is worst case scenario



IXO instrument module: baffle

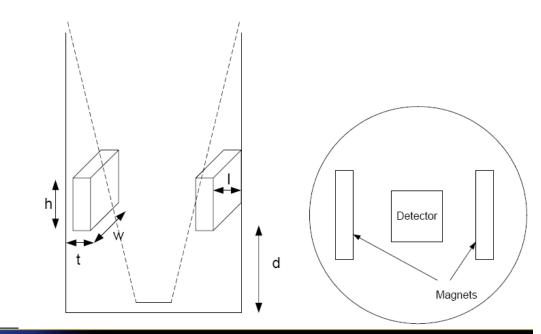
Stray light requirements:

- visible/IR:
 - XGS: $< 3 \times 10^8 \text{ ph/s/cm}^2 (200-1000 \text{ nm})$
 - CIS: $< 1 \times 10^8 \text{ ph/s/cm}^2 \text{ (TBC)} (<30 \text{ nm})$
 - WFI: $< 1 \ x \ 10^{12} \ ph/s/cm^2$
- x-rays:
 - Baffle should stop (to below particle background):
 - HXI/WFI/CIS: E < 40 keV (baffle+Au coating)
 - XGS: E < 2 keV (shroud is sufficient)

 \rightarrow no direct view to sky other than through mirror

Mass (2mm CFRP, 200µm LoS Au, 20% mounting)

- cylindrical : 20 kg
- conical: 12 kg


IXO instrument module: magnetic deflector

in instrument baffles (central baffle + XGS baffle)

 Sized for deflection of all protons with in-band energy (after passing fixed filters) outside FOV:

WFI:	$E_{max} = 45 \text{ keV}$	FoV = 10 x 10 cm
CIS:	$E_{max} = 75 \text{ keV}$	FoV = 3.3 x 3.3 cm
XGS:	$E_{max} = 10 \text{ keV}$	$FoV = 75 \times 3 cm$

- On-axis instruments:
 - magnets 10x15x2 cm,
 - Position 0.6m above detector
 - Residual field at detector ~5 Gauss!!
- XGS:
 - magnets 80x6x1 cm,
 - Position ~0.3m above detector

IXO mission concept

- 1 Introduction
- 2 IXO mission requirements
- 3 IXO mission analysis
- 4 IXO configuration
- 5 IXO instrument module
- 6 IXO service module
- 7 IXO mirror assembly
- 8 Options
- 9-Conclusion

IXO service module: power

- Power subsytem:
 - Max- power requirement: 4.5 kW
 - 28 V unregulated bus
 - 26.4 m2 deployable solar array (Ga As cells)
 - Li-ion battery (MA temperature control before Sun acquisition 650 W during 2 h)
 - Power Distribution Unit (PDU) dedicated to instruments on the instrument platform

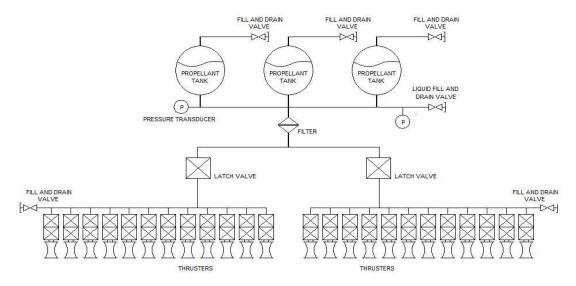
IXO service module: telecommunication

Telecommunication:

- 90 Gbs/day (including protocol over head)
- X bands around 8 GHz (10 MHz band)
- 8.7 Mbps with GMSK and RS (223,255)
- 3 h downlink/day
- Standard equipment: 10W RF power
 - 2 X/X transponder,
 - 2 TWTA,
 - 2 LGA,
 - 1 40cm HGA,
 - 1 RFDU
- New Norcia 35 m antenna G/S (baseline)
- Cebreros G/S (different hemisphere) used when needed, i.e. elevation too low or weather too bad in New Norcia)

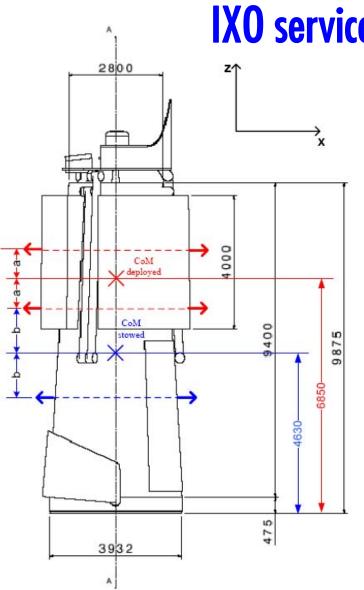
IXO service module: data handling

- Data handling decentralized architecture:
 - On Board Computer (OBC) located in the S/C Bus
 - Instrument Control Unit (ICU) located on the instrument platform for interfacing the IXO payloads/instruments
 - 2 x 250 Gbit memory using SDRAM technology located in the instrument platform
 - ICU interface the main S/C bus OBC by means of spacewire

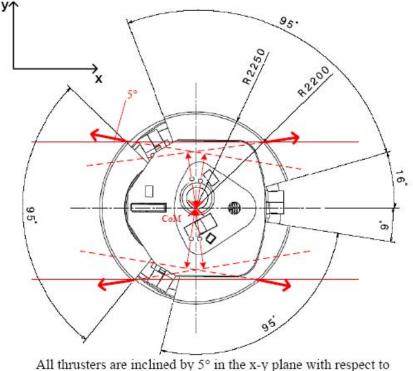


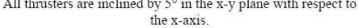
IXO service module: propulsion

A Monopropellant system using Hydrazine (N_2H_4) is selected:


- 24 CHT-20 20N thrusters XMM HP Astrium (D)
- 3 Titanium diaphragm tanks Planck mission heritage (D)
- Sofrance filter (F)
- 2 Latch valve Moog (US)
- 2 Pressure transducers Bradford(NL)
- 5 FDV/FVV Astrium (D)

If total Wet Mass = 6090 kg + total $\Delta V = 100$ m/s then propulsion system =59 kg dry mass + 334 kg propellant = 393 kg




International X-ray Observatory [XO]

IXO service module: propulsion

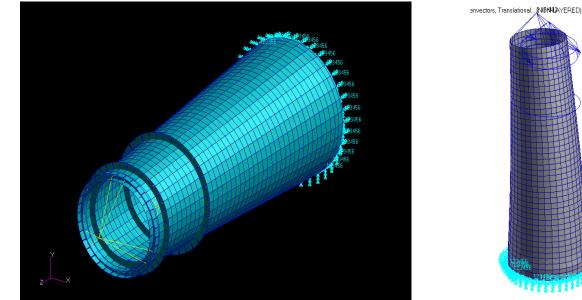
SUN_____

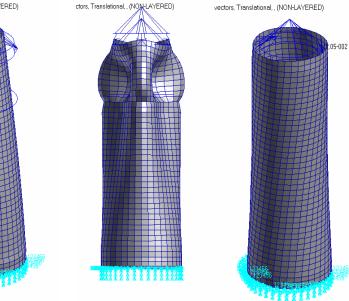
Assumptions: a = 1000 mm b = 1500 mm c = 800 mm

 $\begin{array}{l} 2 \ x \ 12 \ thrusters \ with \ F = 22 \ N \ (incl. \ redundancy) \\ \Delta V x \rightarrow \ F_{eff} = F \ x \ cos \ (5^{\circ}) \\ \Delta V y \rightarrow \ F_{eff} = F \ x \ sin \ (5^{\circ}) \end{array}$

IXO service module: mechanisms

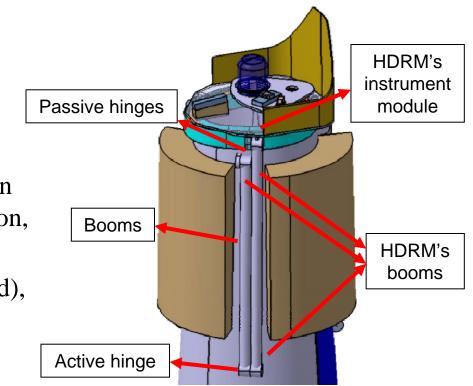
- Optical bench deployment mechanism (articulated boom concept)
- Instrument exchange and refocusing mechanism
- Mirror assembly deployable sun shield
- Inner mirror assembly retractable cover (TBC)
- Outer mirror assembly ejectable cover
- High gain antenna pointing mechanism
- Solar array deployment mechanism

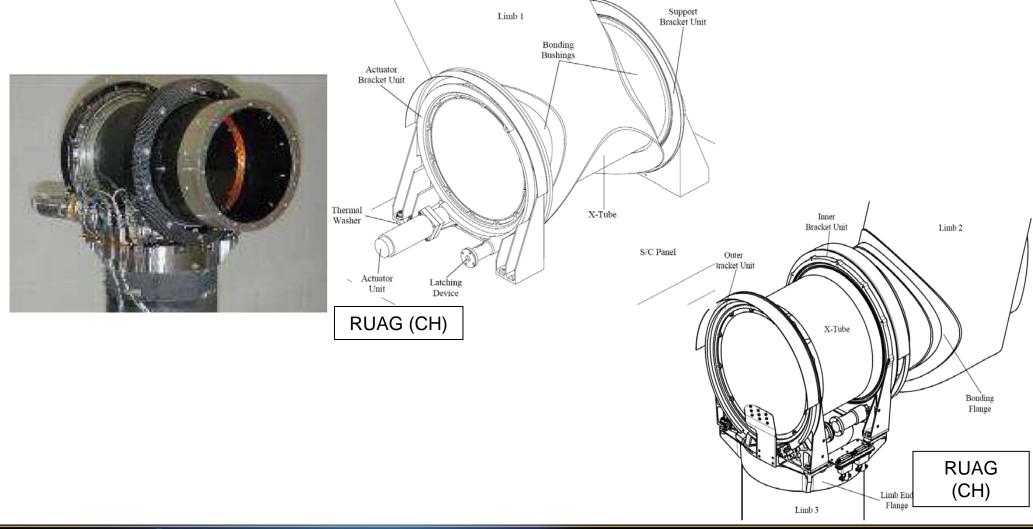



- Performance in deployed configuration (prel. estimates):
 - Deployment accuracy: 1.2 mm radius sphere (RSS)
 - \rightarrow displacement calibration + pointing correction

4

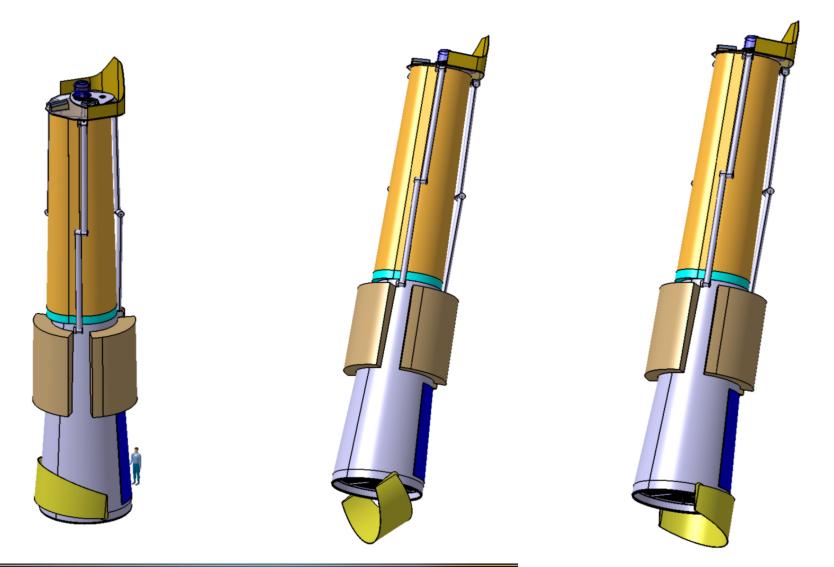
	Eigen Frequency (Hz)			
	Requirement			
Direction	Ariane 5	Atlas 5	FEMTarget	FEM Result
Lateral	8.50	TBD	9.78	9.72
Longitudinal	27.00	TBD	31.05	44.47





Areas of concern for OB deployment mechanism:

- Stowed configuration:
 - Number / location of hold-down and release mechanisms
- During deployment phase:
 - Adequacy of actuation torque
 - Misalignment / lack of synchronization between arm, thus high stresses, friction, potential jamming, due to :
 - initial alignment errors (on ground),
 - errors during actuation,
 - thermo-elastically induced distortions,
 - dynamic perturbation

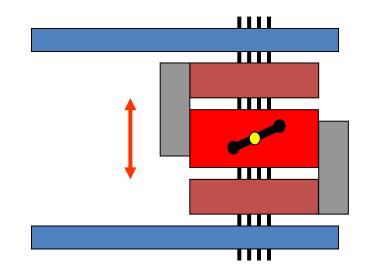


cesa 🖽 🗛

IXO configuration

Shroud Scale Model

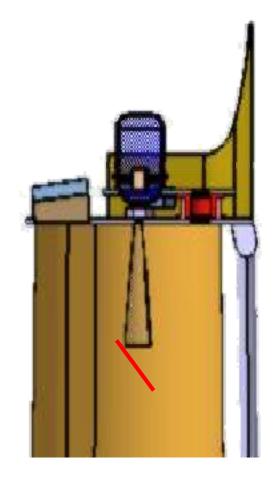
- The GSFC Blanket shop created this 1/25th scale prototype.
- Stows to 3.5cm with some compression force.
- Extends to 49cm nominally.
 - Can extend to about 65 cm with force, but risks tearing the corner seams.
- Stows to about 7% of nominal extension length. (3.5/49)



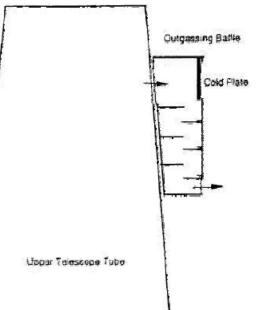
49 cm 65 cm max

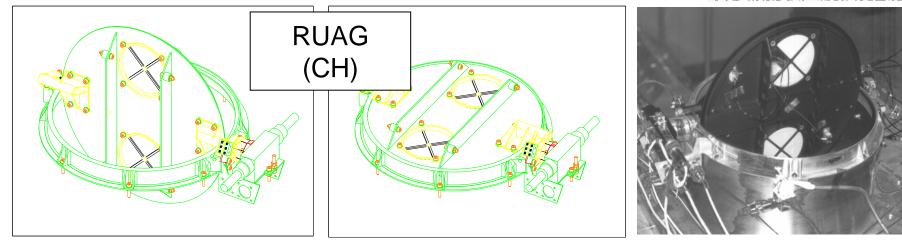
Instrument exchange and refocusing mechanism

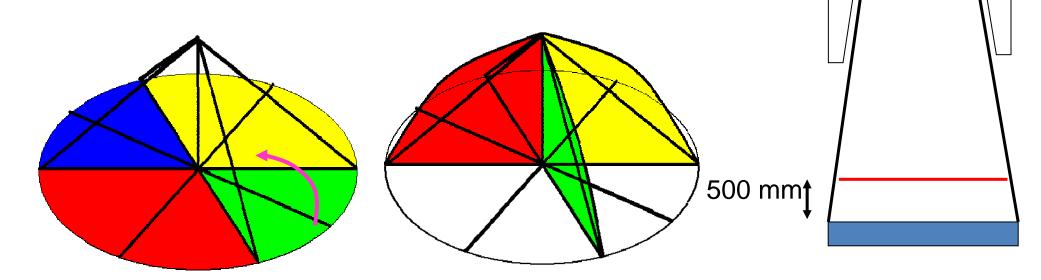
- Integrated mechanism for rotational and linear movement
 - Two rotational drives
 - Stepper motors with angular encoders
 - Torque of 90 Nm (TBC-Harness definition missing)
 - Accuracy of 0.01 deg
 - Tilted slots and rolling elements for refocusing
 - Stroke of ±5 mm
 - Accuracy of 0.1 mm
 - Harness routing for minimal torque
 - Temperature controlled
 - > -20°C operational temperature
 - Life: approx 2000 cycles

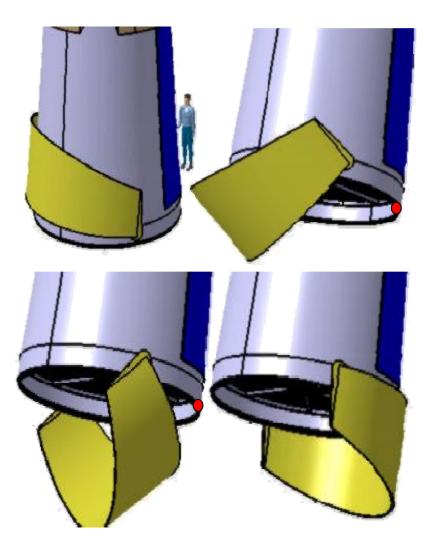


- Outer mirror assembly protection
 - Outer mirror assembly cover ejection mechanism
 - 4 springs
 - Ejection velocity 0.3-0.5 m/s
 - 4 x Non-explosive separation nut (NEA electronics)
 - Internally redundant
 - Quasi-simultaneous release


- Inner mirror assembly protection (Baseline)
 - Cover mirror during assembly
 - Eliminate sources of contamination
 - Main source: Electronic boxes on the inside of the instrument module
 - Overpressure telescope inner volume (N_2)
 - Mechanism to close focal point hole on the baffle inside
 - HDRM: Thermal knife
 - Deployment spring




- Inner mirror assembly protection (Baseline)
 - Venting mechanism
 - Two venting and outgassing doors (XMM Newton)
 - Outgassing baffle (XMM Newton)


- Inner mirror assembly protection (Option / addition)
 - Deployment springs
 - 4 x 3 Thermal knives (Dutch space)
 - Dampers
 - Seal ring
 - Feasibility? Interface with XGS?

Mirror assembly sunshield

- Rotating mirror baffle (Baseline)
 - Two deployment springs
 - 4 x Thermal knives (Dutch Space)
 - Locking mechanism at the center of baffle half circle
- Inflatable structure (Option)

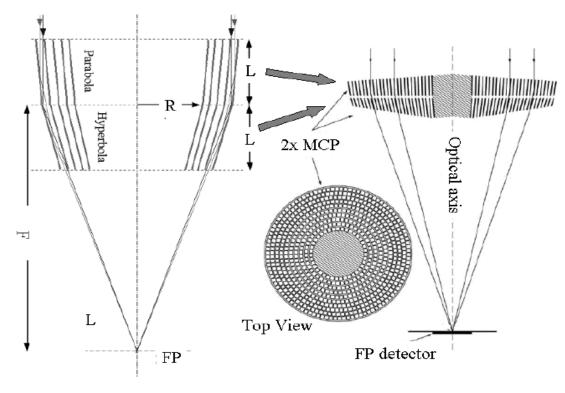
- GNC Architecture : 3 modes
 - Acquisition and Safe Hold (ASH) mode
 - Acquire Sun on +X axis
 - Fine Pointing and Slew (FPS) mode
 - Hold inertial pointing towards target
 - Target change manoeuvre
 - Note: use also during cruise
 - Thruster Control Maneuver (TCM) mode
 - Trajectory correction, orbit maintenance and wheel off-loading

• GNC Equipments

- Actuators
 - Honeywell reaction wheel: HR16 (120 Nms) @ 0.2 Nm Note: possible alternative Goodrich TW-125E200
 - 5 reaction wheel (including 1 on Y-axis)
 - EADS monopropellant thruster: 22 N
- Sensors
 - Sodern autonomous star tracker: Hydra
 - TNO fine sun sensor (calibrated bias error: 0.01°)
 - TNO sun acquisition sensor (accuracy < 1°)
 - SAE MEMS rate sensor (rate bias drift < 5°/hr)
 - Alignment Monitoring Camera (AMC): Sodern coarse lateral sensor (derived from Hydra star tracker) FoV: 1° – accuracy < 1"

42º (No. of slews / year: 250)	[day]	40.0	Settling time allocation: 5 min
180° (No. of slews / year: 10)	[day]	5.4	Settling time allocation: 5 min
Momentum management (every 2 days)	[day]	0.05	Settling time allocation: 2 min
L2 orbit maintenance (every month @ 4 hr)	[day]	2.05	Settling time allocation: 3 min
Detector (No. 41 @ 60 s)	[day]	0.03	Settling time allocation: 1 min
TOTAL	[day]	48.3	
Science	[day]	316.7	
Operational Efficiency	%	86.8	

•	Onboard pointing requirements (after stabilization)				
	– (LT, MT)	STR vs MA alignment	1.0 arcsec		
	– (LT, MT, ST)	STR measurement errors	4.0 arcsec		
•	 Preliminary image quality budget 				
	– (MT)	STR vs MA alignment	0.3 arcsec ¹		
	– (MT)	STR measurement stability	1.0 arcsec		
•	 Preliminary astrometry budget 				
	– (MT)	STR vs MA alignment	0.3 arcsec ¹		
	- (S, LT)	STR vs MA alignment	0.3 arcsec ¹		
	– (S, ST)	STR residual bias	0.5 arcsec		
	– (S, ST)	Residual STR measurement noise	0.1 arcsec		


¹ similar requirements for the Alignment Monitoring Camera

IXO mission concept

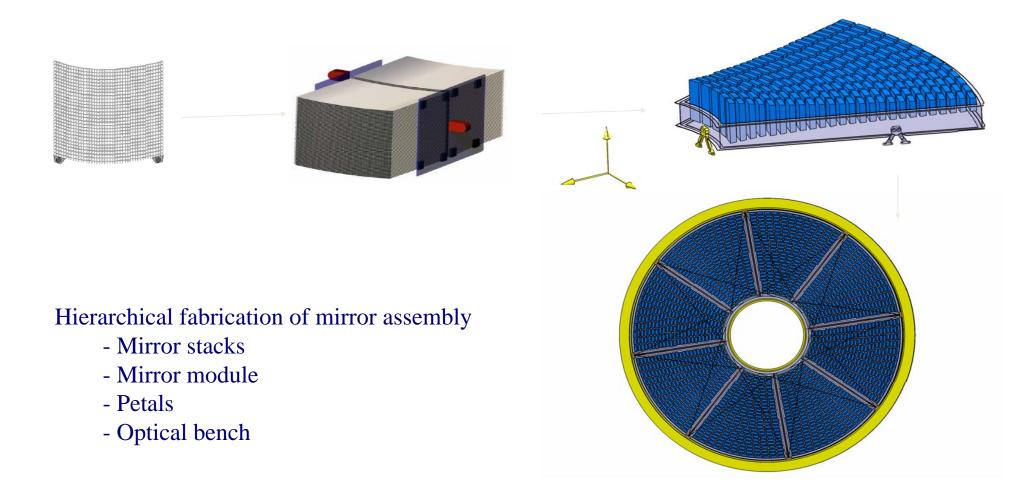
- 1 Introduction
- 2 IXO mission requirements
- 3 IXO mission analysis
- 4 IXO configuration
- 5 IXO instrument module
- 6 IXO service module
- 7 IXO mirror assembly
- 8 Options
- 9-Conclusion

IXO mirror assembly: specification requirements

Pore optics technology

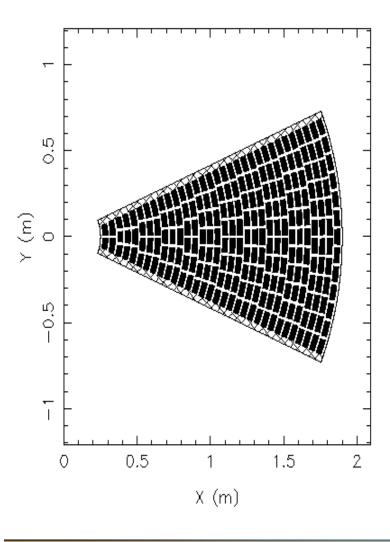
Double-conical approx to Wolter I

F = 20 m


FOV = 17.5 x 17.5 arcmin

Coating:

- Irridium + C overcoating (outer shells)
- Multilayer coating (inner shells ($\theta < 0.27^{\circ}$)

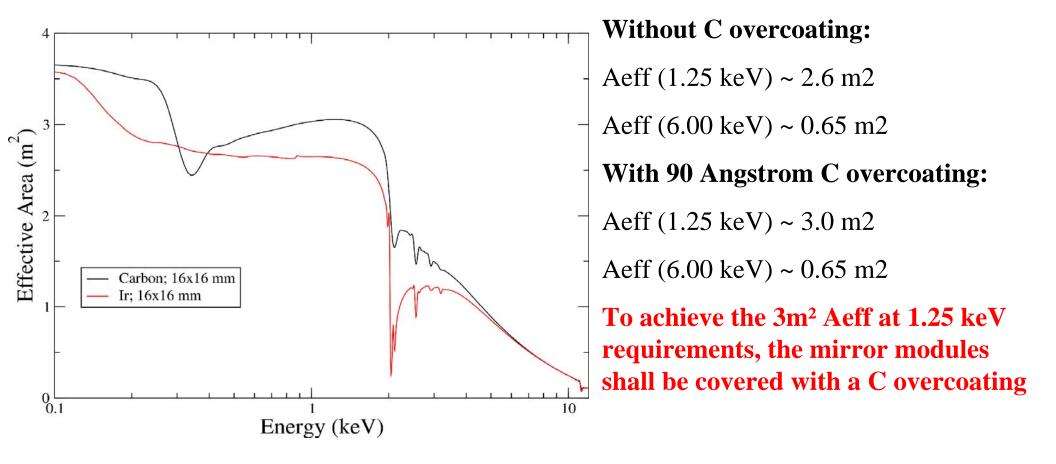

IXO mirror assembly: manufacturing concept

🕐 esa 🦽 🗛

IXO mirror assembly: optical design

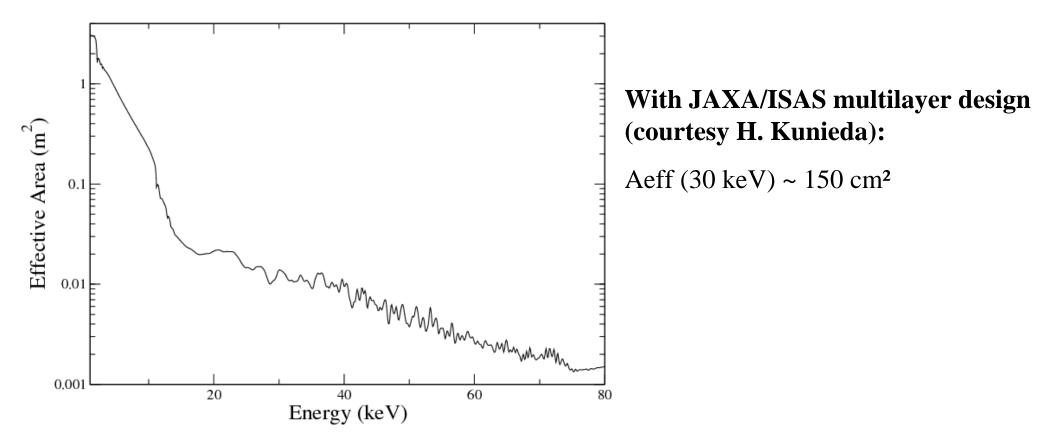
F: 20.0m Rin: 0.25m Rout: 1.90m Nr. of Petals:

Optical design assumption:


- Inner radius 0.25 m, outer radius 1.90 m
- 32 rows
- 236 mirror modules/petal
- spoke width (7cm)

→ To achieve the 3m2 Aeff requirements, the azimuthal/radial spacing of the mirror modules shall be ≤16 mm (22mm assumed for XEUS)

--> The compatibility of the optical bench structure with the allocated mirror module spacing, mass, spoke width and launch loads has to be demonstrated by FEM analysis.



IXO mirror assembly: performance estimate (TBC)

IXO mirror assembly: performance estimate (TBC)

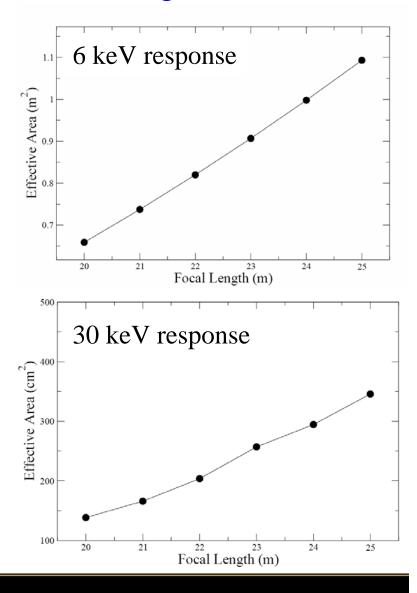
Mirror Module Thermal Control

- About 2[kW] heater power needed to operate the mirror assembly at high temperature (feasibility of room temperature operation is TBC for pore optics)
- A pre-collimator is foreseen to control the radiative environment in front of each individual mirror module
- A post collimator is foreseen to control the temperature gradient that will be induced by the inner conical structure.
 - Interface with grating spectrometer? thermal control of grating spectrometer?
- The Sunshield is covered with MLI on external side and SSM on internal side (TBC) for a mass estimated at 10[kg].
- The current thermal control system and configuration allows a slow rate of temperature drop (7.5[K]/hr)

IXO mission concept

- 1 Introduction
- 2 IXO mission requirements
- 3 IXO mission analysis
- 4 IXO configuration
- 5 IXO instrument module
- 6 IXO service module
- 7 IXO mirror assembly
- **8 Options**
- 9-Conclusion

IXO mission concept: increased focal length


Increased focal length \rightarrow mass increase

 \rightarrow Mass to be taken on:

- mirror assembly:
- instruments:

CSI or XGS without shroud

 \rightarrow Large impact on the system

IXO mission concept: retractable grating box

Mirror assembly and CAT grating accommodation still to be studied:

- Mirror assembly optical design (pore optics) concept
- Mirror assembly petals and optical bench mechanical concept
- Mirror assembly thermal control (e.g. pre and post collimator, heaters)
- Mirror assembly contamination control (e.g. telescope cover, inner cover if needed)
- Grating box concept and interface requirements (NASA input to PDD)
- Definition of mirror assembly interface with grating spectrometer
- Grating accommodation concept
- Prospective achievable X-ray performance

Retractable grating concept option still to be studied:

- Difficulties anticipated: mechanism concept and reliability, XGS thermal control, accommodation/ interface with post collimator outer cover if needed

 \rightarrow No solution identified during the CDF

IXO mission concept: X-ray events time stamping accuracy

- The GAIA installations for the pure timing accuracy can be reused:

1.2 µs timing accuracy (excluding orbital accuracy induced errors)

pass duration* [h]	δρ [km] (1σ)	$\frac{\delta \mathbf{r} [km]}{(1\sigma)}$	δt _ρ [μs] (1σ)	δt _r [μs] (1σ)	$\delta v_{ ho} [mms^{-1}]$ (1 σ)	$ \delta v_r [mms^{-1}] $ (1 σ)
8	0.02	0.5	0.07	1.7	0.5	1.5
4	0.02	0.5	0.07	1.7	0.7	1.5
2	0.02	0.7	0.07	2.3	0.9	2.0
0.5	0.02	2.0	0.07	6.7	1.0	2.5

- Orbital accuracy induced errors:

*plus 0.5h ranging

IXO mission concept: X-ray events time stamping accuracy

• 0.5 h pass (0.5h Doppler and 0.5h ranging):

 $\delta t_{t+\rho+|\mathbf{r}|} = SQRT (1.2^2+0.07^2+6.7^2) = 7 \ \mu s$

• 2 h pass (2h Doppler and 0.5h ranging):

 $\delta t_{t+\rho+|\mathbf{r}|} = SQRT (1.2^2+0.07^2+2.3^2) = 2.5 \ \mu s$

- \Rightarrow 10 µs 1 σ achievable even with very short daily passes
- \Rightarrow 2h passes allow for higher accuracy (or for coverage gap of up to 2 days)

Time and position reconstitution requires post processing of measurements by Flight Dynamics, i.e. precision data are only available a posteriori (~ week after the fact)

IXO mission concept

- 1 Introduction
- 2 IXO mission requirements
- 3 IXO mission analysis
- 4 IXO configuration
- 5 IXO instrument module
- 6 IXO service module
- 7 IXO mirror assembly
- 8 Options
- 9 Conclusion

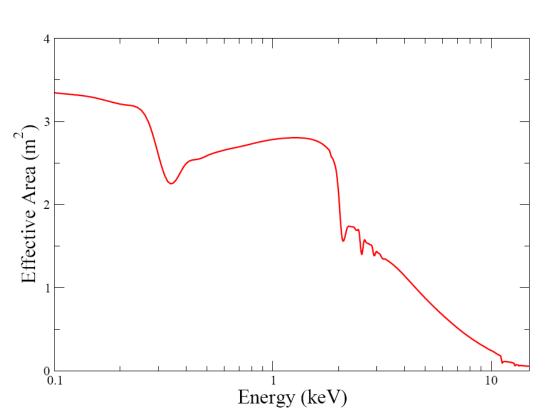
IXO mission concept: conclusion

An IXO mission concept has been established that is:

- technically promising (no show-stopper identified)
- modular and well-suited to an International collaboration

The deployable IXO mission concept presents some risks:

- large number of experiments
- large number of deployable mechanisms
- complex collaboration set-up (high cost risk)


Highest technical risk areas include:

- mirror technology and overall mirror assembly (including grating accommodation),
- CSI (including cryogenic chain),
- bench deployment mechanism,
- instrument exchange mechanism,
- shroud (deployment and micrometeorites impact/straylight)
- mirror assembly cover/ front sunshield deployment
- instrument alignment vs mirror assembly/ metrology

IXO mission concept: conclusion

IXO CDF mission concept prospective performance (feasibility to be assessed):

IXO Aeff	Science Objectives	Estimated Performance
1.25 keV	3 m ²	2.8 m ²
6 keV	1 m ²	0.65 m²
30 keV	350 cm ²	150 cm ²

Assuming:

- Fixed grating assembly with Aeff= 1000 cm2
- MA mass compatible with 1735 kg allocation
- 16 mm MM spacing compatible with launch load
- Carbon overcoating on mirrors
- 50 ppm dust and 1 A microroughness (optimistic)
 --> feasibility to be assessed

IXO mission concept: conclusion

IXO open issues:

- Mirror assembly opto-thermo-mechanical design/ performance
- XGS instrument definition and interface requirements (input to PDD)
- XGS grating box accommodation
- Optical bench deployable mechanism → performance/risks/ reliability
- Deployable shroud / micrometeorites impact \rightarrow stray-light
- Grating box retractable mechanism/ effective area at low X-ray energy

→Post CDF activities:

- Mirror assembly opto-thermo-mechanical design/ performance
- AOCS performance estimate (effect of deployed bench and solar array)
- Deployable mechanism dynamic analysis
- Straylight analysis (TBC)
- L2 particle environment

