

Laboratory Analyses of Marco Polo Samples Ian Franchi

Planetary & Space Sciences Research Institute, Open University, Milton Keynes, MK11 1HP, UK i.a.franchi@open.ac.uk

Overview

- Principle Objective of Marco Polo is to return a sample of a primitive NEO to Earth
- Only laboratory analyses can provide the analytical precision, accuracy, sensitivity and sample selectivity required
- Great array of measurements and problems to be addressed
 - What? types of analyses and studies required
 - How? the instrumentation, approaches and sample requirements
 - Why? the science addressed

Expected Sample?

- Sample will be collected from the regolith of a primitive NEO
 - But we have never seen a close up image of a primitive asteroid....
- Eros fine particle size
 - 10s microns, lots of boulders

Expected Sample?

- Sample will be collected from the regolith of a primitive NEO
 - But we have never seen a close up image of a primitive asteroid....
- Eros fine particle size
 - 10s microns, lots of boulders
- Itokawa coarser particles
 - mm to cm regolith plus blocks

Expected Sample?

- Sample will be collected from the regolith of a primitive NEO
 - But we have never seen a close up image of a primitive asteroid....
- Eros fine particle size
 - 10s microns, lots of boulders
- Itokawa coarser particles
 - mm to cm regolith plus blocks
- Carbonaceous chondrites
 - Many regolith breccias
 - Sub-mm to cm particles

Mineralogy of Expected Sample?

- Carbonaceous chondrites very diverse mineralogy
 - 100nm condensate mineralogy
 - mm chondrules and CAIs
 - Fine phyllosilicate mineralogy
- Carbon content varies by factor 30

Nature of Expected Sample?

- Assume NEO is derived from larger main belt asteroid
 - Block fragment?
 - Rubble pile?
- Original lithic diversity?
 - Structured body onion shell?
 - Peak temp/time decreases radially
 - Effects of fluid flow complex
- Unaltered material abundant
- MP sample mix of lithologies?

Nature of Expected Sample?

- Assume NEO is derived from larger main belt asteroid
 - Block fragment?
 - Rubble pile?
- Original lithic diversity?
 - Structured body onion shell?
 - Peak temp/time decreases radially
 - Effects of fluid flow complex
- Unaltered material abundant
- MP sample mix of lithologies?

Sample Analysis Outline

- MP sample regolith with a mix of dust to pebbles and a number of different lithic components. What to do?
- Bulk properties
 - That relate to understanding overall properties of NEO
- Component properties
 - Asteroidal processes post accretion history
 - Nebula, pre-solar processes pre-accretion history
 - Organic compounds
 - Space weathering

Bulk Properties I

- Elemental Composition
 - ICPMS, INAA, noble gas MS, gas source MS
 - Each technique requires mg to 10s mg material
- Mineralogy
 - XRD, Mössbauer, ESR, NMR
 - Each technique requires mg to 10s mg material
- Isotopic Composition
 - e.g. Oxygen requires mg quantities
- Provides comparison with bulk meteorites, Earth, Mars, etc

Bulk Properties II

- Density & Porosity
 - Pyncometer requires large sample (currently)
- Spectral Properties
 - UV to near-IR (300nm to 2.5 $\mu m)$ and mid-IR (up to 50 μm ?)
 - Requires ≈20 mg of material
- Magnetic susceptibility
- Non-destructive, contamination-free?
 - Could use large representative sample
- Understanding overall structure and properties of asteroid
- Cross-characterisation between sample, MP spectrometer, telescopes.

Identification of Lithologies

- To provide initial characterisation of samples
 - Optimise sample selection for detailed studies, e.g.:
 - Organic rich samples
 - Aqueously altered sample
 - Prisitine nebula rich samples
 - No sample preparation
 - Non-destructive techniques
 - Non-contaminating techniques

- Optical microscopy, spectroscopy, magnetic susceptibility, etc
 - Requires some initial feedback from destructive techniques
- Part of sample curation facility activities

Lithology Characterisation

- Bulk composition, mineralogy, spectral and physical properties
 - Same approach as for bulk sample
- Mineralogy & petrography of sample from nm to mm scale
 - Textures optical and electron microscopy (SEM, TEM)
 - Mineralogy optical and electron microscopy (SEM, TEM), μ -XRD, FTIR/Raman spectrometry
 - Mineral chemistry ASEM, EMPA, XANES, SIMS, LA-ICPMS
 - All in situ techniques requiring preparation of polished sections
 - Some destructive e.g. LA-ICPMS, SIMS
 - Preparation of sub-samples from sections
 - E.g. FIB wafers for synchrotron, TEM

Asteroidal Processes

- Much information derived from component characterisation
 - Multiple fragments range of alteration effects
- Absolute & relative ages require specific phases
 - Known histories (usually simple)
 - Specific compositions e.g. ⁵³Mn-Cr dating range of Mn contents with low Cr contents
- Mostly performed by SIMS
 - If ICPMS/TIMS large samples

Solar Nebula Processes

- Much information derived from component characterisation
 - Concentrate on those components least affected by asteroidal effects
- Detailed study of sub-components chondrules, CAIs, AoAs, mineral frags, etc
 - Trace element distributions, isotopic variations especially oxygen and short lived radionuclides
- Age dating specific components & well understood histories
 - Which processes are we attempting to date
- Principle techniques SEM, TEM, EMPA, SIMS, ICPMS, noble gas MS – mix of in situ and separated samples (10s mgs – of specific components

Pre-Solar Grains

- In situ analyses identification SIMS
 - Followed by both in situ and extraction for characterisation Raman, XANES, TEM, Auger
 - From polished sections prepared from characterisation
- Statistics benefit from preparation of grain concentrates
 - Acid dissolution
 - Requires large samples from organic demineralistaion
 - Gentle separation grain mantles

Organic Compounds

- Intimately related to asteroidal and nebula studies
 - Relationship to rocky matrix and info derived from matrix
- Inventory of free organic compounds
 - Extraction by various polar and nonpolar solvents, pyrolysis
 - GC/GC-MS, LC/LC-MS 10s mg
 - Amino acid chirality 10s mg
 - Nucleobases low abundance 10s to 100mg sample

Organics – Isotopic Ratios

- Introduce a combustion/reduction reactor before MS
 - Isotope ratio MS D/H, ¹³C/¹²C, ¹⁵N/¹⁴N of individual compounds
- Verification of extra-terrestrial origin
- Important in understanding formation processes
 - Distinctive fractionation patterns
 - Signatures of different environments e.g. ISM
 - Identifies links between compound classes and mineralogy
- Requires 5 10g of C-rich carbonaceous chondrite
 - Separate sample for nucleobases and other organics

C Number

Organics – Insoluble & In Situ

- Organic Macromolecule very difficult to study
 - Complex, inter-linked structure of PAHs, heterocycles and aliphatics
- Mineral matrix readily removed (very destructively)
- Structure NMR, Raman, FTIR, XANES, Pyr-GCMS
- Composition GS-MS, NMR
- NMR requires grams of C-rich meteorite

Cody & Alexander 2005

Organics Requirements Summary

- What can be achieved if sample is like CM2 i.e. few wt% C
- With a few grams of good quality sample, multiple analyses of:
 - All in situ techniques
 - All compound abundance techniques
 - Not structural info on macromolecule
 - Not detailed isotopic measurements

Technique		Scientific Objectives achievable for returned mass (g)					Technique		Scientific Objectives achievable for returned mass (g)				
	*	1	5	10	50	100		*	1	5	10	50	100
Fluorescence	N						Free solvent extractable Organics Abundance	Р					
PAS	P						Free water extractable Organics Abundance	Р					
XANES	Р						Macromolecule component abundance	Р					
L2MS	Y						Whole-rock Hyrdo and Hydrous-Pyrolysis - abundance	Y					
IR-VIS spectroscopy	Р						Nucleobase Abundance	Р					
TOF-SIMS	Y						NMR	Р					
nSIMS	Y						Whole-rock Hyrdo and Hydrous-Pyrolysis - isotopes	Y					
Step combustion-MS	Y						Nucleobase Isotopes	Р					
µRaman	N						Free solvent extractable Organics Isotopic	Р					
TEM	P						Free water extractable Organics Isotopic	Р					
LC-GC-MS	P						Macromolecule component isotopes	Р					

...Space Weathering

- Galactic/Solar cosmic ray, <u>solar</u> <u>wind</u>, <u>uv irradiation</u>, <u>heating</u>/ <u>impacts</u>, etc
- Affects all aspects of sample organics most susceptible
- Solar Wind and UV only micron(s) depth penetration
- Many organic analyses low spatial resolution
 - Physically separate irradiated material from interior before analyses
- Heat modification of organics depth (time) main defense
 - Few cms can have a marked effect

t (years)

(c)

Organic Analyses Requirement

- Integrate mineralogy etc with organics
 - Organic analyses from gram(s) of specific, characterised rock types
 - Range of rock types
- Physical separation of irradiated/nonulletirradiated material
 - Low surface:volume ratio of irradiated particles 1×10^{5}
- Protection from peak temperatures ullet
 - Some sampling to shallow depth

Dust rich sample	Solid rock sample	<u>Pebbles (cm sized)</u>
Mixed lithologies?	Single lithology	Each single lithology?
High surface:vol	Carb Chondrite?	Range of lithologies
		Low surface:vol

 ξ/ξ_{max} 5×10^{5} 0.10Young 2001 4×10^{-5} 3×10^{-3} 2×10^{5} 0.00 0 2000 4000 6000 8 0 0 0 radius (m)

Organic Analyses Requirement

- Integrate mineralogy etc with organics
 - Organic analyses from gram(s) of specific, characterised rock types
 - Range of rock types
- Physical separation of irradiated/nonirradiated material
 - Low surface:volume ratio of irradiated particles 1×10^{5}
- Protection from peak temperatures
 - Some sampling to shallow depth

Dust rich sample	Solid rock sample	Pebbles (cm sized)
Mixed lithologies?	Single lithology	Each single inology?
High surface:vol	Carb Chondrite?	Rangenithologies
		Low surface:vol

Sample Requirements

- Bulk properties, composition and mineralogy few 10s mgs
- Properties of components 10s to 100s mg per component
 - Plus sufficient material for polished section(s) gram amounts
- For each lithology in a regolith of different alteration:
- Organics 100s mg for abundances & overall characterisation
- Organics 5g plus for isotopic studies for origin, formation