THERMAP A thermal mapper for Marco Polo

O. Groussin, P. Lamy, L. Jorda (LAM, Marseille), E. Kührt, J. Knollenberg, J. Helbert (DLR, Berlin), E. Lellouch (LESIA, Paris), M. Delbó (OCA, Nice), J. Licandro, M. Serra Ricard, A. Oscoz (IAC, Tenerife), D. Lauretta (LPL, Tucson)

Paris, 18-20 May, 2009

Scientific objectives for mid-IR From the ESA Sci-RD document

Determine the surface temperature to an accuracy of 5 K (goal 1 K):

- @ 10 m resolution for the global characterization
- 0 10 cm resolution for the sampling sites
- \Rightarrow Derive thermal inertia to an accuracy better than 10 %
- ⇒ Derive the thermal skin depth

Identify mineral features:

- @ 10 m resolution for the global characterization
- @ 10 cm resolution for the sampling sites

Instrument requirements

To meet the scientific objectives, the instrument must be able to:

Perform a temperature map of the entire surface

- At different time: one map every degree (= every min)
- At different emission angle: every 10 deg (from 0 to 90 deg)

Perform a spectroscopic map of the entire surface - At a spectral resolution R~70

Achieve a spatial resolution of:

- 10 m @ 2 km for the global characterization
- 10 cm @ 200 m for the local characterization
- ⇒ Good and fast imaging capabilities

⇒ Reasonable spectroscopic capabilities

Instrument concepts

Spectroscopy

R~70 can be achieved with a classical slit spectrometer (Offner grating)

Three possibilities to perform imagesUse the S/C to scan, with a slit spectrometer (DI HRI-IR)Pros:All the spectrometers benefit from thisLead to more simple spectrometer designCons:Rely on the S/C for imaging

Use a scanning mirror, with a slit spectrometer (VIRTIS)

- **Pros:** Does not require S/C pointing capabilities
- Cons: Another mechanism, in addition to the calibr. pointing unit

Use a second channel for imaging, in addition to the spectro channel

- Pros: Guarantee excellent imaging capabilites Cross-checked measurements (2 channels)
- Cons: Slightly more mass

The heritage of MERTIS (BpC)

Characteristics:

- TMA + Offner relay
- 180 x 180 x 130 mm³, 3.4 kg
- based on an uncooled microbolometer array from ULIS (7-15 μm)
- 2 thermopiles (7-14 µm, 14-40 µm)

 ⇒ Accuracy : NETD<1 K for T>100 K (T>245 K w/o thermopiles)
⇒ Spectral resolution of 78-156

⇒ Based on the pushbroom technique

MERTIS is an excellent baseline but it needs imaging capabilites adapted to a fast rotating small body (no pushbroom).

Our current consortium

France

- LAM (Marseille): O. Groussin, P. Lamy, L. Jorda ⇒ PI institute
- LESIA (Paris): E. Lellouch ⇒ Scientific Co-I
- OCA (Nice): M. Delbó ⇒ Scientific Co-I
- CNES (Toulouse): A. Bardoux ⇒ Microbolometer array specialist

Germany

DLR (Berlin): J. Helbert, J. Knollenberg. E. Kuehrt
⇒ MERTIS heritage and scientific Cols

Spain

- IAC (Tenerife): J. Licandro, M. Serra Ricard, A. Oscoz

⇒ Electronics development and scientific Cols

USA

- LPL (Tucson): D. Lauretta

⇒ Deputy PI of the OSIRIS REx mission (asteroid sample return)

Conclusions

We strongly believe in the importance of an imaging channel and we continue our instrument design phase:

- optical and mechanical design
- expected performances, detailed detector characteristics
- electronics realization (see Licandro's presentation)

Marco Polo (2019)