Radio Science Experiment for Marco Polo Asteroid mass, density, gravity field, orbit

Martin Pätzold, Silvia Tellmann Rheinisches Institut für Umweltforschung, Abt. Planetenforschung Universität zu Köln, Köln, Germany

Bernd Häusler, Tom Andert

Institut für Raumfahrttechnik, Universität der Bundeswehr München

Neubiberg, Germany

Radio-Science Method

- Two-way radio link between the spacecraft and Earth using the spacecraft's radio subsystem and radio carriers at two frequencies: X/X and X/Ka
 - Observables:
 - Carrier frequency shift due to relative motion between spacecraft and ground station on Earth (Doppler => relative velocity)
 - Propagation time of coded (ranging) signal => distance between spacecraft and ground station

- Instrumentation onboard the Marco Polo spacecraft: X/X transponder
 X/Ka transponder
 Reception/transmission via High Gain Antenna (HGA)
 RF power: X-band xx Watt; Ka-band 2.5 Watt
 - Spacecraft will be configured and operated in the two-way radio link mode

Ground Segment

- 35-m antenna structure; (New Norcia) and Cebreros
- Cebreros is equipped with Ka-band receivers/transmitters
- up/down-link converter chains
- Intermediate Frequency Modem System (IFMS) to transmit, receive and record radio signals parameters:
 - •Doppler
 - •Ranging
 - •Signal Power (AGC)
 - Meteo data

Science Objectives

- Geophysical characterization of the asteroid
 - mass, bulk density
 - for a close orbiter:
 - gravity field; low degree and order
 - Comparison with computed gravity coefficients
 - => first idea of internal structure
 - Precise determination of heliocentric orbit
 - By orbiting or escorting
 - By beacon on the surface

strategy

- Pre-arrival determination of shape and first order rotational state by optical instruments required
- => first estimate of the volume, assume density
 => first mass estimate; required for approach navigation
 - Have some close and/or slow flybys (drift-bys) for a mass determination in the 10%....1% accuracy range
- Depends on v₀*d , noise, initial mass estimate, asteroid ephemeris and geometry
- Good mass determination required for going into bound orbit

Asteroid flybys - geometry

MEX/Phobos flyby, 17th July 2008

Based on JPL Phobos ephemeris from Jacobson, 2008

Rosetta/Lutetia Flyby 2010 - simulation

Rosetta/Lutetia Flyby 2010 - simulation

drift 1000 m/s distance 100 km

fractional GM accura mass error 30%

Initial Mass Determination

- The mass accuracy is iteratively improved by more and closer flybys (drift-bys)
- Once the mass is sufficiently well known, the spacecraft may be injected into a bound orbit; the mass may now be determined with even higher accuracy
- The bulk density follows from the volume and mass determination
 - The driver for the density accuracy is the volume determination which is from experience less precise than the mass determination
 - Low degree and order gravity field may be determined from orbiting, but is challenging for small bodies

Radio Science Simulator (RSS)

- Developed by Universität der Bundeswehr München
- Software based on MATLAB / SIMULINK; User friendly graphical interfaces
- Planning and analysis of Radio Science observations
- Main computation tasks:
 - State vectors of spacecrafts
 - Planetary ephemeries
 - Ground station visibilities
 - Occultations (planetary, solar)
 - Spacecraft attitude control maneuver for Bistatic Radar and occultation measurements
 - Doppler und Ranging predicts based on planning or reconstructed orbits
 - Simulation of orbits about planetary bodies assuming models of the planetary body and of gravitational and non-gravitational forces acting on the spacecraft

Simulation of orbits about small bodies

-0.5

Simulation study for Don Quichote; terminator orbit of a 400 m size body

Example of simulated s/c orbit considering the heliocentric orbit of small body, potential gravity field, non-gravitational forces I

Body-fixed coordinate system body rotates about small axis s/c terminator orbit

Simulation study for Don Quichote; terminator orbit of a 400 m size body

____0.4 _____0.2

x [km]

simulation study for Don Quichote; terminator orbit of a 400 m size body

surface coverage over a time range of 14 days

Simulation study for Don Quichote; terminator orbit of a 400 m size body

Gravity field acceleration

asteroid orbit

- Spacecraft tracking during prime mission
 - improved ephemeris; important for improved spacecraft orbit
 - improved received frequency prediction and residuals; extracted gravity field
 - Radio beacon on the asteroid surface
 - radio tracking of asteroid
 - precise orbit determination
 - rotational states => hints on internal structure
 - orbit perturbations

method

- Two-way X/X transponder on the surface (LaRa type)
- Transmission RF power: 1 3 watts
- Beacon antenna: omni-directional dipole with 0.7 dBi gain
- Ground stations: 35-m dish (NNO-type); 70 m dish (DSN)
- Example: Asteroid Wilson-Harrington, a = 2.64AU, e = 0.62
- Geocentric distances: very close Earth distances to 3 AU

received signal power

Koln

Conclusions

- Radio Science Group Cologne/Munich may provide support for planning and feasibility assessments of potential Marco Polo orbit scenarios
 - Radio Science experiment on Marco Polo may characterize physical parameters of the asteroid: mass, bulk density, rotation, interior....
- => important for further study of surface material
- Long duration orbiter or surface beacon may be used for precise determination of heliocentric orbit => potential hazard?

