

Sampling Site Close-Up Camera for Small Body Sample Return Mission

Naoko Ogawa^{*1} Hirohide Demura^{*2} Naru Hirata^{*2} Hajime Yano^{*1*3} Makoto Yoshikawa^{*1*3}

> *1 JAXA Space Exploration Center, JAXA *2 The University of Aizu *3 ISAS, JAXA

Lessons Learned from Hayabusa Mission

From Hayabusa mission, a Japanese asteroid exploration mission launched in 2003, we obtained many lessons learned:

- 1. Direct and in-situ sampling detection system is preferable ^{1st} for the mission success criteria Priority
 - Requests for direct in-situ confirmation of sampling
 - Images of the features formed by the projectile impact will be strong evidence for the mission success criteria
- 2. Increasing demands for more detailed observation of ^{2nd} sampling site
 - Geologic / geographic description of the sampling site is desirable
 - 1. No detailed geologic information of the sampling site.
- Extra Few clues for localization and identification of the sampling site on the asteroid
 - Geologic context of the sampling site should be clarified

Needs for Close-Up Camera for Next Missions

A close-up camera will be a good candidate for solution of these lessons. Requirements for the close-up camera are:

1. Direct confirmation of sampling and imaging of features by projectile impact

- ^{1st} Priority 1. Take several images around the sampling site before and after the touchdown
 - 2. Capture the change occurred on the surface of the asteroid (at least the size of the projectile should be recognized)
 - 3. The sampling site will be inside of the spacecraft shadow. A light source will be needed.
- 2. Geologic / geographic description of the Sampling Site
- Priority 1. Take close-up images of the surface with higher resolution than that accomplished in Hayabusa
 - 2. If possible, take images of a crater growth
- 3. Cross-scale images for self-localization and representativeness of samples
 - 1. Identify the position of sampling site on the global model
 - 2. Obtain cross-scale images

These are not satisfied by navigation cameras mounted on Hayabusa, because they are not capable of close-up imaging in the touchdown

→ Another new camera is needed

Concept of Close-Up Camera

- The camera will be mounted on the asteroidal (i.e. anti-sun) face of the spacecraft.
- It images the sampling point and peripheral surrounding environments

Sampling site

Wide-Angle Optical Systems

- We must establish
 - detailed imaging of the sampling site
 - the wide-angle peripheral visual field for self-localization
- These differential demands can be satisfied simultaneously by
 - a fish-eye lens

or

- an omnidirectional camera
- several options can be considered

Fish-Eye and Omnidirectional Cameras

Fisheye Lens

Omnidirectional Camera

Omnidirectional camera can image surroundings with a mirror, but usually the center is invisible \rightarrow A peeping hole on the mirror will be effective

Example: Fish-Eye Lens Simulation

We can see some geologic details near the horizon – they will be some clues for self-localization. Many other requirements are to be evaluated via this simulation.

Model: Itokawa

Pros and Cons of 2 Types of Optics

Omni-Directional Camera	Fisheye Lens
Pros	Pros
•Easy to manufacture	•No invisible regions
•Small aberration	•Light-weight
Cons	Cons
•Cannot see the center →Peeping hole	•Many lenses must be needed and
•Invisible regions	calibrated
•Heavy-weight	•Low resolution

- Invisible regions are not desirable for imaging the sampling site during touchdown
- Higher resolution is better for scientific purposes
- We would like to adopt this camera for the next asteroid exploration mission
 →Development period should be short; the method with lower TRL is preferable
- Now which to choose is under discussion we have to evaluate these two optics from perspectives of mission definition, TRL and interface for the mothership.

Current Status and Future Plans

- Optics is now being discussed reading consistency of requirements and specifications for wide-angle cameras and light sources, in view of TRL, costs, and schedule.
- Planning breadboard model in this FY, if possible
- Preparing 3D mapping based on wide-angle images

These figures show the calibration test for a fisheye camera.

Assuming a fisheye camera, we are expected to obtain such an image in the touchdown phase, for example.

Thank you for your attention!

(Demura, 2008)