# SPATIAL DISTRIBUTION AND TEMPORAL EVOLUTION OF METHANE IN THE MARTIAN ATMOSPHERE

Sergio Fonti, Università del Salento, Lecce, Italy Giuseppe A. Marzo, NASA, Ames Research Center, CA, USA

#### Workshop on Methane on Mars

ESA/ESRIN, Frascati, Italy, 25-27 November 2009

## **Previous measurements**



Planet coverage virtually complete

- Possibility to compare different regions and/or different time
- Huge amount of data readily usable
- Meaningful averages in most places and at most times
- Excellent S/N (~ 300) between 1250 1350 cm<sup>-1</sup>



Wavenumber (cm<sup>-1</sup>)

Acceptable spectral resolution

TES

# Selection criteria

TES spectra have been selected in geography ( $\pm$  60° in **latitude**), geometry and time of observation (nadir; 11-15 h) and Solar longitude ( $\pm$  2° around each equinox/solstice)

### About 3,000,000 spectra

between Autumn of MY24 and Summer of MY27

### **Cluster Analysis**

Clustering criterion: spectral differences around 1306 cm<sup>-1</sup>

Results: two groups of spectra (plus spurious clusters)

Marzo et al., JGR, 111, (2006)

Marzo et al., JGR, 113, (2008)

MC

noMC

# RESULTS

| Observation | Resolution               | Number  | Methane       |            |
|-------------|--------------------------|---------|---------------|------------|
| period      |                          | Total   | MC            | (ppbv)     |
| MY24 Ls 180 | (12.5 cm⁻¹)              | 516,701 | 213,522 (41%) | $33\pm9$   |
| MY24 Ls 270 | (12.5 cm⁻¹)              | 159,201 | 28,428 (18%)  | $6\pm 2$   |
| MY25 Ls 0   | (12.5 cm⁻¹)              | 359,717 | 144,898 (40%) | $17\pm5$   |
| MY25 Ls 90  | (12.5 cm <sup>-1</sup> ) | 442,296 | 136,775 (30%) | $14 \pm 4$ |
| MY25 Ls 180 | (6.25 cm⁻¹)              | 68,901  | 18,495 (27%)  | $18\pm7$   |
| MY25 Ls 270 | (6.25 cm⁻¹)              | 143,840 | 43,438 (30%)  | $5\pm2$    |
| MY26 Ls 0   | (6.25 cm⁻¹)              | 69,349  | 14,003 (20%)  | $10\pm4$   |
| MY26 Ls 90  | (6.25 cm <sup>-1</sup> ) |         |               |            |
| MY26 Ls 180 | (12.5 cm⁻¹)              | 507,365 | 200,508 (40%) | $30\pm8$   |
| MY26 Ls 270 | (12.5 cm⁻¹)              | 320,180 | 45,961 (14%)  | $5\pm1$    |
| MY27 Ls 0   | (12.5 cm⁻¹)              | 197,327 | 42,677 (22%)  | $9\pm3$    |
| MY27 Ls 90  | (12.5 cm⁻¹)              | 115,194 | 38,041 (33%)  | $28\pm8$   |

#### First spatial-temporal map of Martian methane



# Questions

How the amount of methane was derived ?

Is it really methane?

Is the result consistent with previous findings?

How the reported amounts of methane have been derived ?

The methane abundance should be evaluated, taking into account both the **relative number of spectra** associated to the Methane Cluster and the **methane band depth** in the corresponding average spectrum

The chosen Methane Index has been the band depth in the ratio (MC + noMC) / noMC properly scaled, in order to take into account the different resolution

Locally the quantity of methane has been derived scaling the number of spectra present in each cell (10° x 10°) to that of the corresponding temporal slice

We have only the relative abundance

We have scaled the estimated detection limit given by Maguire

|                         | IRIS                                                                                     | TES                                                                                      |  |  |
|-------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| Spectral resolution     | 2.4 cm <sup>-1</sup>                                                                     | 6.25 or 12.5 cm <sup>-1</sup>                                                            |  |  |
| NESR                    | 5.0 10 <sup>-8</sup> W <sup>-1</sup> cm <sup>-2</sup> str <sup>-1</sup> cm <sup>-1</sup> | 1.2 10 <sup>-8</sup> W <sup>-1</sup> cm <sup>-2</sup> str <sup>-1</sup> cm <sup>-1</sup> |  |  |
| Number of spectra       | 1,747                                                                                    | from 14,003 to 213,522                                                                   |  |  |
| Derived<br>detection li | 20 ppbv                                                                                  | from 2 to 6 ppbv                                                                         |  |  |

The normalization has been done assuming that methane was at its detection limit (5 ppbv) in Winter of MY26

#### Is it really methane?





MY 24

#### Are they consistent with previous findings ?

| Fonti & Marzo, submitted         | <b>TES (</b> v <sub>4</sub> ) | 16 ± 5 (0 to 70) |
|----------------------------------|-------------------------------|------------------|
| Mumma, Science, 2009             | Ground $(v_3)$                | 0 to 50 ppbv     |
| Geminale & Formisano, PSS, 2008  | PFS ( $v_3$ )                 | 14 ± 5 (0 to 60) |
| Krasnopolsky, Icarus, 2004, 2007 | Ground ( $v_3$ )              | 10 ± 3 ppbv      |
| Mumma, Bull. AAS, 2004 – 2008    | Ground $(v_3)$                |                  |
| Formisano, Science, 2004         | PFS ( $v_3$ )                 | 10 ± 5 (0 to 35) |
| Mumma, Bull. AAS, 2003           | Ground $(v_3)$                |                  |
| Krasnopolsky, JGR, 1997          | Ground ( $v_3$ )              | < 15 ppbv        |
| Maguire, Icarus, 1977            | IRIS $(v_4)$                  | < 20 ppbv        |

#### **March 2003**

May 2003





# Discussion



Tharsis

Arabia Terrae

**Elysium** 

#### **Methane Sources**



Dohm et al. (PSS, 56, 2008) reported multiple evidence for recent geological/ hydrological activity in the Tharsis/Elysium corridor

Arabia Terrae

Associated with an extensive subsurface deposit of permafrost (Boynton et al., JGR, 112, 2007) and the presence of ancient springs (Allen and Oehler, Astrobiology, 8, 2008),

Hydration is a required condition for both the hydrogeochemical and biogenic hypotheses

### Where is the methane coming from?

Most fascinating hypothesis: biology Possible

Other fascinating hypothesis: geology Probable

Least fascinating hypothesis: external Ruled out



Methane cycle ?

Where (and how) is the methane going?