Measurement of the Isotopic Signatures of Water on Mars; Implications for Studying Methane

Robert Novak¹, Michael J. Mumma², Geronimo Villanueva³

1.Iona College, New Rochelle NY USA, 2. NASA-Goddard Space Flight Center, Greenbelt, MD USA, 3. NASA-GSFC, Catholic University of America, Washington DC USA

Acknowledgements: NSF RUI Program (AST-0805540)

NASA's Planetary Astronomy Program (344-32-51-96)

NASA's Astrobiology Program (344-53-51)

Related Talks:

Michael J. Mumma: Absolute Measurement of Methane on Mars

Geronimo Villanueva: Methane and Water on Mars: Maps of Active Regions and their Seasonal Variability

Outline:

- [HDO]/[H₂O]
- Isotopologues of Methane
- Model to Predict measurement of [13CH₄]/[12CH₄]
- Considerations for the future

Measurements of [HDO]/[H₂O] on Mars

Eq. Width $= 0.0041 \text{ cm}^{-1}$ Noise $= 0.0002 \text{ cm}^{-1}$

Eq. Width

Noise

Column Densities Of HDO and H₂O 150°-156° W

[HDO]/[H₂O] wrt. SMOW

SMOW ratio = 0.312×10^{-3}

Isotopic Signatures of Methane in the Earth's Atmosphere:

¹² CH ₄	0.99827	
¹³ CH ₄	0.01110	
¹² CH ₃ D	0.00062	

from HITRAN

Variations of this ratio provide insights into the origins of Methane, whether abiotic or microbial.

Sherwood Lolar B, et al. (2008), *Geochim. Cosmochim. Acta.*, 72, 4778-4795. Onstott T.C. (2006), *Astrobiology, 6*, 377-395.

Models of Earth's atmosphere for measured conditions above Mauna Kea.

Line By Line Radiative Transfer Model (Clough et al. (2005), *JQSRT*, 91, 233-244.

> A. Methane, Water, Ozone, Ethane, Carbon Dioxide.

B. Methane

Targeted Methane Transitions:

(from JavaHAWKS/HITRAN)

P4 Region (~ 2978.6 cm⁻¹, T=210K

Isotopologue	Wavenumber (cm ⁻¹)	Intensity
¹² CH ₄	2978.6505	9.784E-20
¹³ CH ₄ *	2978.6926	1.769E-21
¹³ CH ₄ *	2978.8083	1.058E-21
¹² CH ₄	2978.8481	6.564E-20
¹³ CH ₄ *	2978.8932	1.061E-21
¹² CH ₄	2978.9201	9.83E-20

 $(Wn.)/(\Delta Wn.) = 70904$

 $I(^{13}CH_4)/I(^{12}CH_4) = 0.018$

Transitions in Red are Being compared.

* P5 transition

P2, ~2998.9 cm⁻¹)

Isotopologue	Wavenumber (cm-1)	Intensity
¹² CH ₄	2998.9939	7.15E-20
¹² CH ₄	2999.0602	4.77E-20
¹³ CH ₄ *	2999.0634	3.13E-22

 $(Wn.)/(\Delta Wn.) > 900000$

 $I(^{13}CH_4)/I(^{12}CH_4) = 0.0066$

* P3

R0

Isotopologue	Wavenumber (cm-1)	Intensity
¹² CH ₄	3028.7523	1.53E-19
¹³ CH ₄ *	3028.8519	1.60E-21

 $(Wn.)/(\Delta Wn.) = 30400$

 $I(^{13}CH_4)/I(^{12}CH_4) = 0.011$

*R1

R1

Isotopologue	Wavenumber (cm-1)	Intensity
¹² CH ₄	3038.4984	1.445E-19
¹³ CH ₄ *	3038.6144	1.968E-21
¹³ CH ₄ *	3038.6285	1.312E-21

$$(Wn.)/(\Delta Wn.) = 26000$$

$$I(^{13}CH_4)/I(^{12}CH_4) = 0.023$$

*R2

Summary:

Transition	(Wn.)/(∆ Wn.)	I(13CH ₄)/I(12CH ₄)
P4	70904	0.018
P2	> 900000	0.007
R0	30400	0.011
R1	26000	0.023

R1 is the targeted transition.

¹³CH₄ (R2) is to the blue side of ¹²CH₄ (R1)

Del dot 0f -16.0 km/sec shifts wavenumber by .16 cm⁻¹

- Best transition to retrieve ¹³CH₄through
the Earth's Atmosphere from those listed here.

Components of Atmospheric Model Used to Retrieve Gas Column Densities on Mars:

- Solar Model (based on Hase et al., JQRST, 102, (2006), 450-463)
- Mars Atmosphere Model*, Incoming (LBLTRM model)
- Surface Blackbody Component
- Mars Atmosphere Model*, Outgoing (LBLTRM model)
- Earth Terrestrial Model (LBLTRM model)
- Doppler shift between Sun and Mars (r dot)
- Doppler shift between Mars and Earth (del dot)

^{* 10} pr-microns H₂O, 40 ppb CH₄

Using noise = 0.0002 cm-1

$$S/N(H_2O) = 49.4$$

 $S/N(^{12}CH_4) = 6.4$
 $S/N(^{13}CH_4) = 0.2$

Model P4 Transition

Ground-based:

Space-based:

Ground-Base Measurements of ¹³CH₄/¹²CH₄:

- High Spectral Resolution (> 75000)
- Sufficient Doppler Shift (> 15 km/sec)
- Better S/N
 - * Measure and Add Multiple Absorption Lines Simultaneously
 - * More sensitive detectors

Possible Near Future Measurements:

- CRIRES on VLT
 - * R > 100000
 - * Altitude ~ 2600 m
 - * precipitable terrestrial Water Vapor ~ 3.0 mm
 - * Multiple lines of Methane
- iSHELL on NASA-IRTF (funded proposal)
 - * R ~ 70000
 - * Altitude ~ 4200 m
 - precipitable terrestrial Water Vapor ~ 1.0-2.0 mm
 - * Cross disperse Spectrograph
 - Multiple Lines.

Suggested Future Work:

- High Resolution Space Based Near IR Spectrograph

- Detection/Models for ¹²CH₃D