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Questions:

*\WWhat are the potential mechanisms for hydrate
dissociation in the shallow subsurface?

*\What are the local effects of hydrate
dissociation? Are there feedbacks that need to
be considered?

\What is the rate of hydrate dissociation?
*Could hydrate dissociation/formation provide

fluxes of methane comparable to those observed
onMars?



Potential Gas Hydrate Reservoirs on Mars
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Hydrate dissociation mechanisms:

1.Increase Temperature

2.Decrease Pressure

3.Decrease Gas
Concentration

4. Increase Salinity

All result in negative feedbacks
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Increase in Temperature
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Decrease in pressure or gas concentration

Decrease in P or X leads to 160 Equivalent Pressure and gas

hydrate dissociation —_— units of gas —_— concentration increase in a
released closed or semi-closed
system, remaining hydrate
stabilized

Volume Methane
stored as gas
at 1 bar
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Salinity-induced hydrate dissociation
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Reaction Mechanism

Zero- order reaction
1 CO, =k(t)
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Rates of Hydrate Dissociation

Phases P (Mpa) T (K) Rate/Diffusion Coefficient Reference
CO, hydrate 3x 104 250 3x 103 (mol/m?2s) Blackburn et al., 2009
sublimation
CO, hydrate - ice 0.2 250 7.9 x 10* mol/m?2s Initial Rate
0.2 250 2.1 x 10> mol/m?2s Diffusion-limited
0.1-0.3 270-273 4x10°-9x 10> (mol/s)* Giavarini et al., 2007
CH, hydrate > ice  0.1-0.5 268-272 3x10*-2x101¥m?/s Komai et al., 2004
(higher initial rates)
0.1 264-270 1x 10>-3x 10 (mol/s)* Sun and Chen, 2006
* No surface area reported
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Hydrate source for seasonal methane plumes?

Constraints Rate (250 K) Lateral area of Methane abundance [ppb]
: e
reservoir (km?) 60

Observed plume 1x 10’11 mol/m2/s 9.7 x 106
Terrestrial tundra 1 x10° mol/m2/s 6000 (120 days)

Unconfined 8 x10* mol/m?/s 0.143 (120 days)
Hydrate Reservoir- 15
dissociation ¢ [E8
g | [ B

Unconfined 3 x 103 mol/m?/s 0.04 (120 days) "_15 | §Synis Major
Hydrate Reservoir- ST
SUbIImatlon -3%3 10 290 270
Confined Hydrate 2 x 10" mol/m2/s 5.4 (120 days) ESESRIESS
Reservoir or diffusion Mumma et al. 2009

through 40 m of

ice

Relatively small hydrate reservoirs could produce
the observed plumes.



Formation of methane hydrates as a surface sink?

CO, hydrate
sublimation
CO, hydrate - ice

CH, hydrate - ice

Ice > CO, Hydrate

Ice > CO, Hydrate
Ice - CH, Hydrate

Ice - CH, Hydrate

3x 104

0.3
0.3
0.1-0.3
0.1-0.5

0.1
0.7

0.7
1-2

1-2

250

250
250
270-273
268-272

264-270
250

250
245-270

245-270

3x 103 (mol/m?2s)

8 x 10 mol/m2s

2 x 10> mol/m2s

4x 10-9x 10> (mol/s)*
3x1014-2x1013m2/s

1x 10>-3x 10® (mol/s)*
2 x 104 mol/m2s

3 x 10> mol/m?2s

2x10°-2x10% mol/m?/s

2 x 10 m2/s

Blackburn et al., 2009

Initial Rate
Diffusion-limited
Giavarini et al., 2007
Komai et al., 2004

(higher initial rates)
Sun and Chen, 2006
Initial Rate

Diffusion-limited
Initial Rate, KUHS et
al., 2006

Diffusion limited, KUHS
et al., 2006

At 150K, 5.3 x 10 MPa (53 millibars) P(CH,) needed to form hydrate



Conclusions

*All mechanisms result in a negative feedback for hydrate dissociation at
local scales.

*Sublimation rate > Open system dissociation > Diffusion-limited dissociation

eRates of dissociation are more than sufficient to produce observed methane
concentrations, even considering the negative feedbacks.

*Rates of formation exceed methane uptake rate needed to explain plumes,
but mechanism required to re-concentrate methane.
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