Methane hydrates A source for slow methane release on Mars?

Megan Elwood Madden, John Leeman, Brandon Guttery

School of Geology and Geophysics, University of Oklahoma

David Blackburn

Arkansas Center for Space and Planetary Science, University of Arkansas

Rawn et al. in prep

Questions:

- •What are the potential mechanisms for hydrate dissociation in the shallow subsurface?
- •What are the local effects of hydrate dissociation? Are there feedbacks that need to be considered?
- •What is the rate of hydrate dissociation?
- •Could hydrate dissociation/formation provide fluxes of methane comparable to those observed on Mars?

Potential Gas Hydrate Reservoirs on Mars

Hydrate dissociation mechanisms:

- 1. Increase Temperature
- 2. Decrease Pressure
- 3. Decrease Gas Concentration
- 4. Increase Salinity

All result in negative feedbacks

Increase in Temperature

Hydrate dissociation is an **endothermic** process

Temperature buffers

Constant heat source necessary for continuous dissociation

Increase T leads to hydrate dissociation

Hydrate dissociation consumes heat, reduces ambient temperature

Without further heat input, remaining hydrate will remain stable

Decrease in pressure or gas concentration

Pressure and gas concentration increase in a closed or semi-closed system, remaining hydrate stabilized

Salinity-induced hydrate dissociation

Experimental Hydrate Dissociation Rates

Reaction Mechanism

Rates of Hydrate Dissociation

Phases	P (Mpa)	T (K)	Rate/Diffusion Coefficient	Reference
CO ₂ hydrate sublimation	3x 10 ⁻⁴	250	3x 10 ⁻³ (mol/m ² s)	Blackburn et al., 2009
CO ₂ hydrate → ice	0.2 0.2 0.1-0.3	250250270-273	7.9 x 10 ⁻⁴ mol/m ² s 2.1 x 10 ⁻⁵ mol/m ² s 4x 10 ⁻⁵ - 9x 10 ⁻⁵ (mol/s)*	Initial Rate Diffusion-limited Giavarini et al., 2007
CH ₄ hydrate → ice	0.1-0.5		$3 \times 10^{-14} - 2 \times 10^{-13} \text{ m}^2/\text{s}$ $1 \times 10^{-5} - 3 \times 10^{-6} \text{ (mol/s)*}$	Komai et al., 2004 (higher initial rates) Sun and Chen, 2006

0.112-

Zero- order reaction

 $CO_2 = k_i(t)$

CO₂Dissociation

Elwood Madden et al, in prep

^{*} No surface area reported

Hydrate source for seasonal methane plumes?

Constraints	Rate (250 K)	Lateral area of reservoir (km²)	
Observed plume	1x 10 ⁻¹¹ mol/m ² /s	9.7 x 10 ⁶	
Terrestrial tundra	1 x 10 ⁻⁹ mol/m ² /s	6000 (120 days)	
Unconfined Hydrate Reservoir- dissociation	8 x 10 ⁻⁴ mol/m ² /s	0.143 (120 days)	
Unconfined Hydrate Reservoir- sublimation	3 x 10 ⁻³ mol/m ² /s 0.04 (120 days)		
Confined Hydrate Reservoir	2 x 10 ⁻⁵ mol/m ² /s	5.4 (120 days) or diffusion through 40 m of ice	

Mumma et al. 2009

Relatively small hydrate reservoirs could produce the observed plumes.

Formation of methane hydrates as a surface sink?

Phases	P (Mpa)	T (K)	Rate/Diffusion Coefficient	Reference
CO ₂ hydrate sublimation	3x 10 ⁻⁴	250	3x 10 ⁻³ (mol/m ² s)	Blackburn et al., 2009
CO ₂ hydrate → ice	0.3 0.3 0.1-0.3	250 250 270-273	8 x 10 ⁻⁴ mol/m ² s 2 x 10 ⁻⁵ mol/m ² s 4x 10 ⁻⁵ - 9x 10 ⁻⁵ (mol/s)*	Initial Rate Diffusion-limited Giavarini et al., 2007
CH ₄ hydrate → ice	0.1-0.5	268-272 264-270	3 x10 ⁻¹⁴ – 2 x 10 ⁻¹³ m ² /s 1x 10 ⁻⁵ - 3x 10 ⁻⁶ (mol/s)*	Komai et al., 2004 (higher initial rates) Sun and Chen, 2006
Ice → CO ₂ Hydrate	0.7	250	2 x 10 ⁻⁴ mol/m ² s	Initial Rate
$Ice \rightarrow CO_2$ Hydrate	0.7	250	3 x 10 ⁻⁵ mol/m ² s	Diffusion-limited
Ice \rightarrow CH ₄ Hydrate	1-2	245-270	2 x 10 ⁻⁶ - 2 x 10 ⁻⁴ mol/m ² /s	Initial Rate, KUHS et al., 2006
Ice → CH ₄ Hydrate	1-2	245-270	2 x 10 ⁻¹⁴ m ² /s	Diffusion limited, KUHS et al., 2006

At 150K, 5.3 x 10^{-3} MPa (53 millibars) P(CH₄) needed to form hydrate

Conclusions

- •All mechanisms result in a negative feedback for hydrate dissociation at local scales.
- •Sublimation rate > Open system dissociation > Diffusion-limited dissociation
- •Rates of dissociation are more than sufficient to produce observed methane concentrations, even considering the negative feedbacks.
- •Rates of formation exceed methane uptake rate needed to explain plumes, but mechanism required to re-concentrate methane.

Future Work

- •Determine rates of CH₄ hydrate dissociation and compare to CO₂
- •Determine rates at low T, determine activation energy
- Determine effect of pressure

Acknowledgements: Andrew Madden, Seth Gainey, Margaret Root, Robert Turner

Funding: ORAU Powe Award, NASA Planetary Geology and Geophysics, OU VP Research