Methane hydrates A source for slow methane release on Mars? # Megan Elwood Madden, John Leeman, Brandon Guttery School of Geology and Geophysics, University of Oklahoma #### David Blackburn Arkansas Center for Space and Planetary Science, University of Arkansas Rawn et al. in prep #### Questions: - •What are the potential mechanisms for hydrate dissociation in the shallow subsurface? - •What are the local effects of hydrate dissociation? Are there feedbacks that need to be considered? - •What is the rate of hydrate dissociation? - •Could hydrate dissociation/formation provide fluxes of methane comparable to those observed on Mars? # Potential Gas Hydrate Reservoirs on Mars # Hydrate dissociation mechanisms: - 1. Increase Temperature - 2. Decrease Pressure - 3. Decrease Gas Concentration - 4. Increase Salinity All result in negative feedbacks # Increase in Temperature Hydrate dissociation is an **endothermic** process Temperature buffers Constant heat source necessary for continuous dissociation Increase T leads to hydrate dissociation Hydrate dissociation consumes heat, reduces ambient temperature Without further heat input, remaining hydrate will remain stable # Decrease in pressure or gas concentration Pressure and gas concentration increase in a closed or semi-closed system, remaining hydrate stabilized ### Salinity-induced hydrate dissociation # Experimental Hydrate Dissociation Rates #### **Reaction Mechanism** # Rates of Hydrate Dissociation | Phases | P (Mpa) | T (K) | Rate/Diffusion Coefficient | Reference | |-------------------------------------|-----------------------|---|--|--| | CO ₂ hydrate sublimation | 3x 10 ⁻⁴ | 250 | 3x 10 ⁻³ (mol/m ² s) | Blackburn et al., 2009 | | CO ₂ hydrate → ice | 0.2
0.2
0.1-0.3 | 250250270-273 | 7.9 x 10 ⁻⁴ mol/m ² s
2.1 x 10 ⁻⁵ mol/m ² s
4x 10 ⁻⁵ - 9x 10 ⁻⁵ (mol/s)* | Initial Rate Diffusion-limited Giavarini et al., 2007 | | CH ₄ hydrate → ice | 0.1-0.5 | | $3 \times 10^{-14} - 2 \times 10^{-13} \text{ m}^2/\text{s}$
$1 \times 10^{-5} - 3 \times 10^{-6} \text{ (mol/s)*}$ | Komai et al., 2004 (higher initial rates) Sun and Chen, 2006 | 0.112- Zero- order reaction $CO_2 = k_i(t)$ CO₂Dissociation Elwood Madden et al, in prep ^{*} No surface area reported ### Hydrate source for seasonal methane plumes? | Constraints | Rate (250 K) | Lateral area of reservoir (km²) | | |--|--|---|--| | Observed plume | 1x 10 ⁻¹¹ mol/m ² /s | 9.7 x 10 ⁶ | | | Terrestrial tundra | 1 x 10 ⁻⁹ mol/m ² /s | 6000 (120 days) | | | Unconfined
Hydrate Reservoir-
dissociation | 8 x 10 ⁻⁴ mol/m ² /s | 0.143 (120 days) | | | Unconfined
Hydrate Reservoir-
sublimation | 3 x 10 ⁻³ mol/m ² /s 0.04 (120 days) | | | | Confined Hydrate
Reservoir | 2 x 10 ⁻⁵ mol/m ² /s | 5.4 (120 days) or diffusion through 40 m of ice | | Mumma et al. 2009 Relatively small hydrate reservoirs could produce the observed plumes. #### Formation of methane hydrates as a surface sink? | Phases | P (Mpa) | T (K) | Rate/Diffusion Coefficient | Reference | |---|-----------------------|-----------------------|--|--| | CO ₂ hydrate sublimation | 3x 10 ⁻⁴ | 250 | 3x 10 ⁻³ (mol/m ² s) | Blackburn et al., 2009 | | CO ₂ hydrate → ice | 0.3
0.3
0.1-0.3 | 250
250
270-273 | 8 x 10 ⁻⁴ mol/m ² s
2 x 10 ⁻⁵ mol/m ² s
4x 10 ⁻⁵ - 9x 10 ⁻⁵ (mol/s)* | Initial Rate Diffusion-limited Giavarini et al., 2007 | | CH ₄ hydrate → ice | 0.1-0.5 | 268-272
264-270 | 3 x10 ⁻¹⁴ – 2 x 10 ⁻¹³ m ² /s
1x 10 ⁻⁵ - 3x 10 ⁻⁶ (mol/s)* | Komai et al., 2004 (higher initial rates) Sun and Chen, 2006 | | Ice → CO ₂ Hydrate | 0.7 | 250 | 2 x 10 ⁻⁴ mol/m ² s | Initial Rate | | $Ice \rightarrow CO_2$ Hydrate | 0.7 | 250 | 3 x 10 ⁻⁵ mol/m ² s | Diffusion-limited | | Ice \rightarrow CH ₄ Hydrate | 1-2 | 245-270 | 2 x 10 ⁻⁶ - 2 x 10 ⁻⁴ mol/m ² /s | Initial Rate, KUHS et al., 2006 | | Ice → CH ₄ Hydrate | 1-2 | 245-270 | 2 x 10 ⁻¹⁴ m ² /s | Diffusion limited, KUHS et al., 2006 | At 150K, 5.3 x 10^{-3} MPa (53 millibars) P(CH₄) needed to form hydrate #### Conclusions - •All mechanisms result in a negative feedback for hydrate dissociation at local scales. - •Sublimation rate > Open system dissociation > Diffusion-limited dissociation - •Rates of dissociation are more than sufficient to produce observed methane concentrations, even considering the negative feedbacks. - •Rates of formation exceed methane uptake rate needed to explain plumes, but mechanism required to re-concentrate methane. #### **Future Work** - •Determine rates of CH₄ hydrate dissociation and compare to CO₂ - •Determine rates at low T, determine activation energy - Determine effect of pressure **Acknowledgements:** Andrew Madden, Seth Gainey, Margaret Root, Robert Turner **Funding:** ORAU Powe Award, NASA Planetary Geology and Geophysics, OU VP Research