

P.-Y. Meslin¹, R. Gough², F. Lefèvre³, F. Forget¹, M.A. Tolbert²

¹Laboratoire de Météorologie Dynamique, Université Pierre et Marie Curie (UPMC), Paris, France

³LATMOS, CNRS/UPMC, Paris, France

²Department of Chemistry and Biochemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA.

P.-Y. Meslin¹, R. Gough², F. Lefèvre³, F. Forget¹, M.A. Tolbert²

¹Laboratoire de Météorologie Dynamique, Université Pierre et Marie Curie (UPMC), Paris, France

³LATMOS, CNRS/UPMC, Paris, France

> Observations: Short scale time and space variations

²Department of Chemistry and Biochemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA.

P.-Y. Meslin¹, R. Gough², F. Lefèvre³, F. Forget¹, M.A. Tolbert²

¹Laboratoire de Météorologie Dynamique, Université Pierre et Marie Curie (UPMC), Paris, France

²Department of Chemistry and Biochemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA.

³LATMOS, CNRS/UPMC, Paris, France

- > Observations: Short scale time and space variations
- ➤ The mechanisms that can induce short term variations of atmospheric CH₄ on Mars, apart from the seasonal enrichment over the winter poles characteristic of non-condensible gases, are yet to be discovered.

P.-Y. Meslin¹, R. Gough², F. Lefèvre³, F. Forget¹, M.A. Tolbert²

¹Laboratoire de Météorologie Dynamique, Université Pierre et Marie Curie (UPMC), Paris, France

²Department of Chemistry and Biochemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA.

³LATMOS, CNRS/UPMC, Paris, France

- > Observations: Short scale time and space variations
- ➤ The mechanisms that can induce short term variations of atmospheric CH₄ on Mars, apart from the seasonal enrichment over the winter poles characteristic of non-condensible gases, are yet to be discovered.
- ➢ Gough et al. (2009, this meeting): adsorption/desorption in the regolith
 ⇒ seasonal variability of atmospheric methane

> Possible effects:

- Fate of a plume emitted by a local source in a virgin/equilibrated atmosphere: adsorption in the regolith slows down its dispersion and increases the contrast between the peak area and its surroundings ⇒ can it explain Mumma's et al. observations?
- How important is the "pseudo-leakage" term present in the mass balance equation?

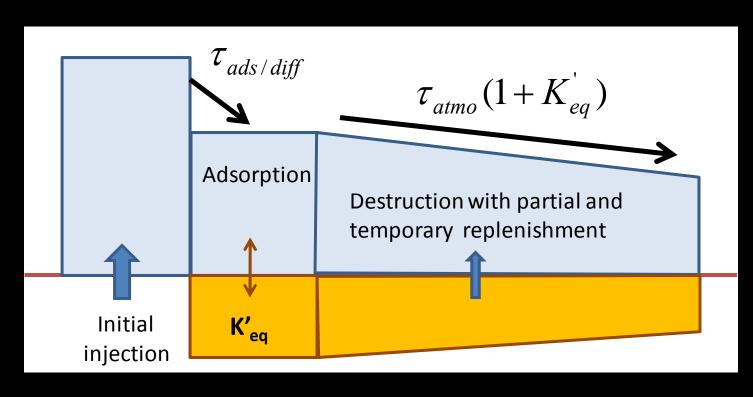
Possible effects:

- Fate of a plume emitted by a local source in a virgin/equilibrated atmosphere: adsorption in the regolith slows down its dispersion and increases the contrast between the peak area and its surroundings ⇒ can it explain Mumma's et al. observations?
- How important is the "pseudo-leakage" term present in the mass balance equation?

$$\frac{\mathrm{d}M_{\mathrm{atmo}}}{\mathrm{d}t} = \Phi - \frac{M_{\mathrm{atmo}}}{\tau_{\mathrm{atmo}}} - \frac{\mathrm{d}M_{\mathrm{ads}}}{\mathrm{d}t}$$

Possible effects:

- Fate of a plume emitted by a local source in a virgin/equilibrated atmosphere: adsorption in the regolith slows down its dispersion and increases the contrast between the peak area and its surroundings ⇒ can it explain Mumma's et al. observations?
- How important is the "pseudo-leakage" term present in the mass balance equation?


$$\frac{\mathrm{d}M_{\mathrm{atmo}}}{\mathrm{d}t} = \Phi - \frac{M_{\mathrm{atmo}}}{\tau_{\mathrm{atmo}}} - \frac{\mathrm{d}M_{\mathrm{ads}}}{\mathrm{d}t}$$

$$M_{\mathrm{ads}} = K_{\mathrm{eq}} M_{\mathrm{atmo}}$$

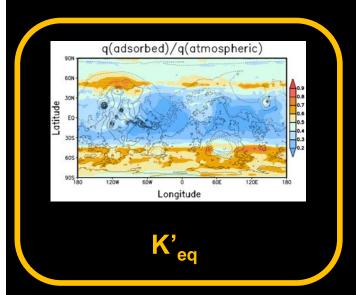
$$M_{\text{atmo}} = \Phi \tau_{\text{atmo}} \left[1 - \exp \left(-\frac{t}{\tau_{\text{atmo}} (1 + K'_{eq})} \right) \right]$$

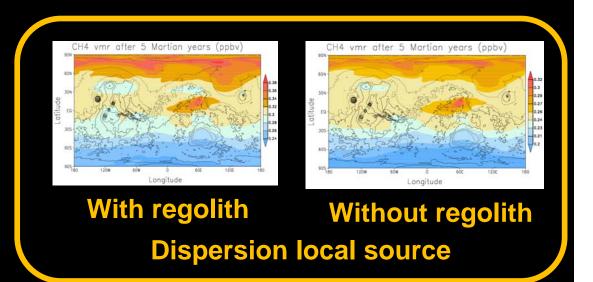
Possible effects:

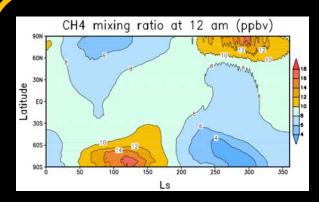
- Fate of a plume emitted by a local source in a virgin/equilibrated atmosphere: adsorption in the regolith slows down its dispersion and increases the contrast between the peak area and its surroundings ⇒ can it explain Mumma's et al. observations?
- How important is the "pseudo-leakage" term present in the mass balance equation?

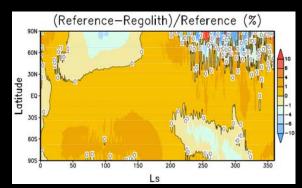
> Possible effects:

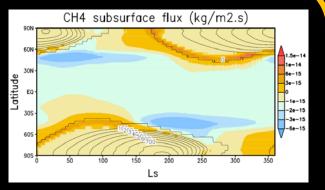
- Fate of a plume emitted by a local source in a virgin/equilibrated atmosphere: adsorption in the regolith slows down its dispersion and increases the contrast between the peak area and its surroundings ⇒ can it explain Mumma's et al. observations?
- How important is the "pseudo-leakage" term present in the mass balance equation?
 - Time to reach equilibrium with the regolith?
 - Total amount of adsorbed methane stored in the regolith?


> Possible effects:


- Fate of a plume emitted by a local source in a virgin/equilibrated atmosphere: adsorption in the regolith slows down its dispersion and increases the contrast between the peak area and its surroundings ⇒ can it explain Mumma's et al. observations?
- How important is the "pseudo-leakage" term present in the mass balance equation?
 - Time to reach equilibrium with the regolith?
 - Total amount of adsorbed methane stored in the regolith?
 - Seasonal variations (once equilibrium is reached): is the adsorption-diffusion kinetics fast enough? are the seasonal temperature variations and thermal skin depths large enough to induce significant variations of the atmospheric column abundance of CH₄?


Model


- 3D simulations with a version of the LMDZ GCM that includes coupling with the subsurface (thermal coupling and transport)
- Takes into account the kinetics and thermodynamics of methane adsorption (taken from Gough et al., 2009)
- Free parameters : thickness of the regolith, specific surface area, K_d value
- Includes first-order loss rates (oxidation): set to 0 for now.
- Neither pore choking by subsurface ice nor the influence of co-adsorption are considered at this stage.


Results

Seasonal cycle (SSA = $100 \text{ m}^2.\text{g}^{-1}$): only a few % variations, no feature at low latitudes. Cannot explain the observations.