Studying methane and other trace species in the Mars atmosphere using a SOIR instrument

R. Drummond (1), A.C. Vandaele (1), F. Daerden (1), E. Neefs (1), A. Mahieux (1), V. Wilquet (1),

F. Montmessin (2,3), J.L. Bertaux (2,3), E. Marcq (2)

- (1) Belgian Institute for Space Aeronomy (IASB-BIRA), Ukkel, Belgium
- (2) LATMOS, Verrières-le-Buisson, France
- (3) IPSL, Université UVSQ, Guyancourt, France

be

Talk outline

- □ SOIR instrument description
- Results from VEX-SOIR in orbit around Venus
- Possible observations from a representative Mars orbit
- Martian atmospheric constituents within the SOIR spectral range
 Detection limits
- Ongoing improvements to SOIR
- Nadir capabilities
- Conclusion

be

SOIR Instrument Characteristics

SOIR characteristics	Value or range	
Wavelength range	2.29 to 4.43 µm	
Wavenumber range	2353 to 4310 cm ⁻¹	
Spectral sampling interval	1 pixel = 0.1 cm^{-1}	
Resolving power $[\lambda/\Delta\lambda=\upsilon/\Delta\upsilon]$	23200 to 43100	
FOV	2' x 30'	
Spectral resolution Spatial resolution (Δz at limb)	0.12 – 0.18cm ⁻¹ < 1 km	
Detector	2D HgCdTe, 320x256 pixel matrix	
Power	17.8 W	
Mass	< 8 kg	
Size	414 x 254 x 210 mm ³	

SOIR instrument description

Example of results: orbit 341.1 order 149 (2/4)

aeronomie

Aerosols: Retrieval technique – Extinction profiles

With

- dz_i the thickness of layer i
- \succ I_i the atmospheric intensity of layer I
- \succ I₀ the full sun intensity
- $\succ \beta_i$ the extinction of layer i

V. Wilquet, et al., "Preliminary characterization of the upper Venusian haze from UV to mid-IR by SPICAV/SOIR on Venus Express", J. Geophys. Research, 2009

Methane on Mars Workshop, ESRIN, Italy

aeronomie.be

V. Wilquet, et al., "Preliminary characterization of the upper Venusian haze from UV to mid-IR by SPICAV/SOIR on Venus Express", J. Geophys. Research, 2009

Methane on Mars Workshop, ESRIN, Italy

aeronomie.be

Solar Occultation Possibilities at Mars

Methane on Mars Workshop, ESRIN, Italy

.be

aeronomie.be

Simulated observations – C₂H₆ and HCI

SOIR Detection Capabilities

Species	Scientific Objective	Current Knowledge	Detection limit	Expected SOIR Advance
CH ₄	Identify sources	0-60ppb	0.1 ppb	CH_4 abundance & improve maps
CO ₂	Profile density and T	MGS up to ~50 km	1%, 1K (accuracy)	Model assimilation, P, T profiles
H ₂ O	Profile	<300 ppm	10 ppb	Photo-chemical loss investigations
СО	Profile	700-800 ppm	1 ppm	Provide GCM model constraints
HDO among others	Profiling isotopic ratios ¹⁷ OCO; ¹⁸ OCO ¹³ CO ₂ ; C ¹⁸ O ₂	0.85 ppm	1% (accuracy)	Provide profiles
Aerosols	Properties, extinction profiles	TES measurement		Provide profiles, GCM validation
$H_{2}CO$ $C_{2}H_{2}$ $C_{2}H_{6}$ $HC1$ OCS SO_{2}	Search for unidentified species	<3.0 ppb <2.0 ppb <400 ppb <2.0 ppb 10 ppb 1.0 ppb	0.1ppb 1 ppb 0.1 ppb 1 ppb 10 ppb 0.1 ppm	Provide profiles and mapping

These values are for solar occultation

Ongoing Improvements

- Development of an AOTF with side lobe suppression
- New echelle grating using innovative aluminum processing techniques
- Integration of a new generation FPGA to act as interface between the spacecraft telecommand system and the SOIR instrument
- □ Faster transmission rate and higher data volume
- Optical redesign and signal optimization
- Study on cooling of the resized baseplate and other methods to increase SNR
- Overall increase of Technological Readiness Level (TRL) for future flight opportunities

v **.be**

Conclusions

- SOIR is a spaceflight-proven, easy-to-accommodate instrument that has the full support of Belgian Science Policy
- The SOIR instrument has already proven its capability to monitor routinely key components of the Venus atmosphere
- In the atmosphere of Mars, SOIR could accurately measure CH₄ abundance down to sub-ppb level and retrieve the vertical profile; detect hydrocarbon species and measure the HDO/H₂O isotopic ratio from orbit
- SOIR is evolving towards a versatile version including NADIR. The mapping would be more efficient i.e. not restricted to solar occultation seasons

