Challenges raised by the observed variations of methane on Mars

Franck Lefèvre

LATMOS CNRS/Université Pierre et Marie Curie, Paris

François Forget

LMD CNRS/Université Pierre et Marie Curie, Paris The point of view of the atmospheric chemist & dynamicist

- Are the observed variations consistent with the known atmospheric chemistry and physics ?
- Can the Mars atmosphere create variations ?
- What happens if the source is localized ? episodic ?
- What are the implications on the lifetime/source/sink of methane on Mars?

The chemistry-as-we-know-it scenario

• Methane implemented in the LMD global climate model with coupled photochemistry

- Lifetime: 330 terrestrial years
- Source: 260 t terrestrial year⁻¹ (Earth: 582×10⁶ t year⁻¹)

The chemistry-as-we-know-it scenario

• what if the methane source is localized ? episodic ? both ?

release: $L_s = 135-166^\circ$ (60 sols)

The chemistry-as-we-know-it scenario

Shorter lifetime ?

- Idealised tracers released from Syrtis Major
- Episodic source ($L_s \sim 150^\circ$)
- Various lifetimes (1000 years to 100 days) in the atmosphere

Jan-Mar 2003 (MY26)

Jan-Mar 2006 (MY27-28)

Lifetime: 200 days Source: ~150 000 t

Lefèvre and Forget, Nature, 2009

The CSHELL/NIRSPEC scenario

Lifetime in the atmosphere: 2 terrestrial years release: $L_s = 120-183^{\circ}$ (120 sols)

Villanueva et al., this workshop

Source: ~80 000 t

The PFS scenario

Lifetime in the atmosphere: 3 terrestrial years

• methane source : between 25-30 km altitude

~40 ppbv

Formisano et al., this workshop

A missing atmospheric loss of methane ?

Maybe!

but

- 1. This process must be extremely powerful (100-500 x faster than the « conventional » methane loss)
- 2. It must be consistent with the observed behaviour of
 - Methane on Earth
 - Other species on Mars

O ₃	Perrier et al., 2006; Fast et al., 2008; Lefèvre et al., 2008; Krasnopolsky, 2009
CO	Smith et al., 2009
H_2O_2	Clancy et al., 2004; Encrenaz et al., 2004; 2008; Lefèvre et al., 2008

- Loss by chlorine
- Loss by triboelectricity
- Loss in the regolith

Resistance-Ground

DeLory et al., Astrobiology, 2006; Atreya et al., Astrobiology, 2006; Farrell et al., Geophys. Res. Lett., 2007

 $\begin{array}{l} \mathsf{CO}_2 + e^{\scriptscriptstyle -} \to \mathsf{CO} + \mathsf{O}^{\scriptscriptstyle -} \\ \mathsf{H}_2\mathsf{O} + e^{\scriptscriptstyle -} \to \mathsf{OH} + \mathsf{H}^{\scriptscriptstyle -} \to \ldots \to \mathsf{H}_2\mathsf{O}_2 \\ \mathsf{CH}_4 + e^{\scriptscriptstyle -} \to \mathsf{products} \end{array}$

TES dust opacity MY26 (2002-2004)

50 times as large as the observations

 $CH_4 + e^- \rightarrow products$

 $CO_2 + e^- \rightarrow CO + O^-$

Methane loss in the regolith

- triboelectric production of $H_2O_2 \rightarrow$ precipitation \rightarrow buildup of oxidants in the regolith Atreya et al., 2006; 2007
- reversible adsorption of CH₄
- in situ formation of H_2O_2 and other oxides/superoxides

Gough et al., this workshop; Meslin et al. (see poster)

Hurowitz et al., 2006; Davila et al., 2008

methane loss in the regolith

Villanueva et al., this workshop

Lifetime: ~ 6 hours

Lefèvre and Forget, 2009

The CSHELL/NIRSPEC scenario

Lifetime in the regolith: 24 hours release: $L_s = 120-183^\circ$ (120 sols)

Villanueva et al., this workshop

Conclusions

- The "conventional" atmospheric chemistry does not produce measurable methane variations on Mars, even in the case of a current, episodic, and localized source.
- The condensation/sublimation cycle of CO₂ should generate large-scale methane variations at high latitudes (but they differ from what is observed).
- CSHELL/NIRSPEC: In the most favourable case, an atmospheric CH₄ lifetime of less than 200 days (seasonal release) or ~2 Earth years (single event) is necessary to reproduce the observations.

Conclusions

- The "conventional" atmospheric chemistry does not produce measurable methane variations on Mars, even in the case of a current, episodic, and localized source.
- > The condensation/sublimation cycle of CO_2 should generate large-scale methane variations at high latitudes (*but they differ from what is observed*).
- CSHELL/NIRSPEC: In the most favourable case, an atmospheric CH₄ lifetime of less than 200 days (seasonal release) or ~2 Earth years (single event) is necessary to reproduce the observations.
- PFS: measurements at high latitudes require a lifetime of less than ~3 Earth years. Longitudinal variations at high latitudes and seasonal trends at mid-to-low latitudes cannot be reproduced.
- The CH₄ source: quantitative agreement with the observations requires considerable amounts:
 - ~150 000 tonnes CSHELL/NIRSPEC, seasonal release
 - CSHELL/NIRSPEC, single event
 - ~ 50 000 tonnes PFS, polar summer

~ 80 000 tonnes

Mid-Atlantic Ridge: 50 000-130 000 t yr⁻¹ (Keir et al., 2005)

Conclusions

Solutions ?

- fast atmospheric loss of methane by chlorine:
 - is not supported by observations of HCI
- fast atmospheric loss of methane by electrochemistry:
 - is not supported by current observations of CO, H₂O₂, and O₃
- fast loss of methane in the regolith:
 - must be extraordinarily rapid (< 24 h) to satisfy the observations
 - is not supported by current observations of other minor species (CO, H₂O₂, O₃), or must be highly selective
 - is for the moment not supported by laboratory data (Gough et al., this workshop)

Observed variations of methane are unexplained by known atmospheric chemistry and physics