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Juno Science Objectives

— Determine O/H ratio (water abundance) and
constrain core mass to decide among alternative
theories of origin.

Interior

— Understand Jupiter's interior structure and dynamical
}F)ro erties by mapping its gravitational and magnetic
ields.

Atmosphere

— Map variations in atmospheric composition,
temperature, cloud opacity and dynamics to depths
greater than 100 bars.

lo footprint Polar emission

Polar Magnetosphere

— Explore the three-dimensional structure of Jupiter's
polar magnetosphere and aurorae.

Main oval \T

Ganymede and Europa footprints




Junoe Payleaad

Gravity Science (JPL/Italy)
Magnetometer— MAG (GSFC)
Microwave Radiometer— MWR (JPL)
Energetic Particles —]JEDI (APL)

Plasma ions and electrons — JADE (SwRI)
Plasma waves/radio — Waves (U of lowa)
Ultra Violet Imager — UVS (SwRI)

Visible Camera — Juno Cam (Malin)

InfraRed Imager - JIRAM (Italy)

Radiation Lessons Learned | 3



Junoe Missien' Design

Launch: August 2011

5 year cruise

Baseline mission:
32 polar orbits
Perijove ~5000 km
11 day period
Spinner
Solar-powered

Orbit is designed to avoid radiation from the inner belts
of Jupiter. Dips inside inner belt at perijove and goes
above belts (Juno is in polar orbit).
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Juno Orbit 4:

Gravity Science

Earth to Jupiter ¥Wiew: Orbit 4 (Gravity Science) E/PO
2016,/11 /21 08:02:00.0000 UTC

5 days

6-hour Jupiter
science pass

4 days

3 days

2 days
1 day
Opportunities for __
0 communication >
1171

with Earth ’\
10 days /

6 days Small maneuver
to set up for next

9 days . .
Jupiter science pass

8 days 7 days
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— R — » jUno FIitSytem‘

Solar Wing #3

Power at 1 Au (theoretical): 15 kW
Power at JOI: 486 W
Power at EOM: 428 W

Z 2.5 m HGA

MAG Boom

20+ m Diameter

Solar Wing #1
2.4m wide x 6.06m long, 91 Kg

2.36m wide x 8.7m long; 99.6 Kg _
Solar Wing #2 WAVES Electric

Antenna

Spacecraft: 1600 Kg dry mass; 3625 kg wet mass




iCS are in a vault

MGA

Fwd RCS REM (2)
MAG Boom Support Arm

JADE Sensor (3)
Vault

EDI
JIRAM Electronics JEDI Sensor (3)

SRU (2) JADE lon Sensor

Main Deck “ SA Connectors (3)

Oxidizer Tank (2) Pl | ) e Fuel Tank (4)

Helium Tank (3)

Wing Support
Strut & Hinge (3)

Nutation Damper (2)

Toroid Antenna MWR Antenna:




Solar Cell
Junctions
(3 Mrad)

Deck Component
Surface Dose
(under blanket)

ion Radfiation TID Levels

Solar Cell Coverglass
(> 100 Mrad)

Vault Electronics

| Instruments Outside Vault
(<0.6 Mrad in 60 mil housing)

V.




Electronics Vault

. Vault (not populated): 157 Kg
Wault (populated): 277 Kg
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Radiation

® Radiation effects come in two flavors:
— Total ionizing dose (TID)
— Instantaneous flux levels

® Can induce electronic tailures, data corruption, and/or
noise.

® RDF of 2 is usual design factor tfor TID
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G000 practices

Understand model and spectrum of radiation.
Selection of parts consistent with flux and TID (spectra important)
Transport code can model shielding options

Generally shielding is preferred to new board designs...stay within
heritage if possible.

Be conservative and use RDF=2 (some call this RDM)
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Juno' Where to begin

Identify contacts for radiation group (at least one per hardware
institute)

Develop list of heritage parts for all components

Evaluate potential areas in need of spot shielding

Estimate box sizes

Estimate mass required for shielding (both housing and spot)
Identify problem parts that are candidates for redesign.

Radiation strategy should including cables, connectors, etc.
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Density (1/cm?)

Intensity (1/cm?2.s.-sr)

1.E+00

Salid lines = 50 ke
T = total

T

20 30
Radial Position (R

Solid lines > 50 keV
T = total

20 30
Radial Position (A )
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1.5 MeV electrons
Blue — Galileo
Lavender - Pioneer
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>11MeV electron flux
Blue — Galileo
Lavender - Pioneer
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—#—Divine-GCamrett
—il—GIRE-Average
—ar— GIRE-Worst

1.0E+141 —s—GIRE-noF

1.0E+13 A

1.0E+12

1.0E+11

Fluence (cm-z)

1.0E+1D + (*} Fluences at energies greater than
100 Me' were obtained using power
law extrapolation of 50 and 100 MY
data points.

1.0E+09

1.0E+08

1.0E+07 S ey L
0.1 1 10 100 1000

Energy (MeV)
Fig. 26. The GIEE model integral spectra corrected for pitch angle and extrapolated from 20

MeV to 1000 MeV are compared with the Divine model spectrum for the complete
Europa mission trajectory.
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Dose rate

DDD

SEE

Charging

Transient or
Secondary radiation

Very high compared to other NASA/ESA missions.
Dominated by high energy electrons. Will require special
attention for JEO and JGO.

Very high, especially during lo fly-bys or Europa orbits.
Will require special attention for JEO.

Typical level as other NASA/ESA missions.
Could be important for optoelectronic devices at Jupiter.

Typical level as other NASA/ESA missions. Trapped heavy
ions at Jupiter are not significant for most electronics.

Internal charging is a major issue due to high electron
flux. Will require special attention for JEO.

Important design consideration for sensors and
detectors. Must include secondary particles from high
energy electron interactions with materials.
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O Generalcl{, the RDF of 2 is conservative. GLL was only
to about 150 mrad, yet survived a much higher

designe
dose.

(GLL dosea through J33 (GIRE)

1d

Aluminum Spherical Shell Thickness, mil

Radiation Lessons Learned
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