

CDSM – A New Scalar Magnetometer

Pollinger¹⁾, A., R. Lammegger²⁾, W. Magnes¹⁾, M. Ellmeier²⁾, W. Baumjohann¹⁾, M. Volwerk¹⁾, L. Windholz²⁾ and M. Dougherty³⁾

¹⁾ Space Research Institute, Austrian Academy of Sciences, Austria
²⁾ Institute of Experimental Physics, Graz University of Technology, Austria
³⁾ Blackett Laboratory, Imperial College London, United Kingdom

3rd EJSM Instrument Workshop, January 18th, 2010

- CDSM = Coupled Dark State Magnetometer
- scalar magnetic field measurement device
- completely new measurement principle
- simple sensor unit design
 - no excitation coils
 - no dead zones
 - no double cell unit
 - no moveable parts
- Iess resource-demanding instrument design (500g, 1W)

- Introduction of involved institutions
- Why Scalar Magnetometer?
- Introduction of the CDSM principle
- Development of CDSM at IWF and IEP
 - current setup and performance
 - future setup, expected resources and performance
- Advantages of CDSM in space
- Challenges of CDSM in space
- Outlook

- Space Research Institute (IWF) of AAS in Graz, Austria
 - development of fluxgate magnetometers, satellite potential control units, atomic force microscope, electron drift instrument ...
 - involved in Cluster, Rosetta, BepiColombo, MMS, etc.
- Institute for Experimental Physics (IEP) of TUG in Graz, Austria
 - focus in optical spectroscopy
 - CDSM invented by IEP senior scientist Roland Lammegger

- fluxgate magnetometers require in-flight calibration in solar wind condition or frequent S/C roll-manoeuvres for offset determination and a final absolute accuracy of better than 1nT
- especially on a 3-axes stabilized S/C the boom should be in addition more than 3m long or a very stringent magnetic cleanliness program is required, respectively
- the fluxgate sensor would have to be extremely temperature stable and might require heater power for a tight regulation of the sensor temperature
- during the science phase, both EJSM S/C won't be in the solar wind
- ideal configuration for an absolute accuracy of better than 1 nT:

 fluxgate gradiometer on 3m long rigid boom and flexible 1-2m long boom extension for light weight, scalar sensor

- CDSM = Coupled Dark State Magnetometer
- excitation of free alkali atoms using a multi chromatic laser field
- Zeeman effect: measure splitting of a spectral line into several components in the presence of a magnetic field
- Coherent Population Trapping (CPT) effect = quantum interference effect
- magnetic field measurement = frequency measurement + well-known natural constants (using Breit-Rabi formula)
- CPT: narrow (strict) constaints

- very narrow line width of CPT or so called Dark State effect: 30Hz
- extremely high slope at zero crossing -> very accurate frequency value -> very accurate magnetic field value

- single CPT resonance
 - frequency depends on the external magnetic field AND the temperature (because of buffer gas in sensor cell)
 - NO distinction between temperature and magnetic field changes possible
 - not usable for scientific space applications
- BUT temperature dependency can be cancelled out by coupling two CPTs in parallel: CDSM
- CDSM: magnetic field measurement is NOT temperature dependant

Current CDSM Test Setup

Current Performance

Until End of 2010

Expected Resource Requirements

Sub-unit	Mass [g]	Power [mW]	Envelope [mm ³]
Sensor	150	250 ²⁾	70x50x50
HF Board	200	300	100x150x30
LF/FPGA Board	150	450	100x150x20
Sensor Harness	20 g/m	-	-
Total	500 ¹⁾	1000	-

¹⁾ without sensor harness and thermal hardware

²⁾ heater power

- road map to increase performance
 - change laser field from Rubidium D2 to D1 excitation line
 - rough sensor cell heating (target window ± 5°C)
 - already known hardware improvements

Expected Performance until End of 2010			
PSD	2 pT/Hz ^½		
Corner Frequency	100 Hz		
Characteristics	no 1/f below 100 Hz		

- absolute measurement (only well-known natural constants)
- simple sensor unit design
 - no excitation coils
 - no double cell unit
 - no moveable parts
 - radiation / temperature critical electronics inside spacecraft
- no temperature dependance because of the "C"
- possible mounting on a flexible boom
- resource advantages over existing absolute magnetometer
 - mass: 3-5 times (< 500g)</p>
 - power: 2–3 times (< 1000mW)</p>

- radiation hardness of critical parts
 - VCSEL laser diode:
 - publications of similar VCSELs promise good radiation hardness and life-time performance
 - photo diode:
 - shielding against total dose effects
 - single events may increase shot noise: trade-off between bandwidth and sensitivity possible
 - BUT: no influence on accuracy
- no heritage for a prestigious mission like EJSM so far

- increase sensitivity to 2 pT/Hz^{1/2} until end of 2010
- decrease resources to 500g / 1000mW until end of 2010
- investigation of radiation hardness of critical parts
- application for development activities in 2010 and 2011 will be send to Austrian Space Application Program as soon as ASAP7 is going to be announced (Feb. 2010)
- space qualification on a Chinese science satellite (CSES)
 - engineering model required in spring 2011 (TRL 5)
 - launch in 2013 (TRL 7)
 - perfect conditions for getting heritage for "bigger" missions

CDSM – A New Scalar Magnetometer

Pollinger¹⁾, A., R. Lammegger²⁾, W. Magnes¹⁾, M. Ellmeier²⁾, W. Baumjohann¹⁾, M. Volwerk¹⁾, L. Windholz²⁾ and M. Dougherty³⁾

¹⁾ Space Research Institute, Austrian Academy of Sciences, Austria
²⁾ Institute of Experimental Physics, Graz University of Technology, Austria
³⁾ Blackett Laboratory, Imperial College London, United Kingdom

3rd EJSM Instrument Workshop, January 19th, 2010