EJSM RADAR STUDIES: JOVIAN RADIO ENVIRONMENT B. Cecconi^a, P. Zarka^a, S. Hess^b, J.-L. Bougeret^a

^a LESIA-CNRS, Obs. de Paris, Meudon, France
^b LASP, University of Colorado, Boulder, Colorado, USA

LOW FREQUENCY RADIO SOURCES AT JUPITER

RADIO EMISSION PROPERTIES

Very intense:

up to ~10 orders of magnitude more intense than jupiter black body (non-thermal).

- Sporadic
- Localized sources: auroral sources (above ~3 to ~40 MHz)
- Beamed
- Polarized

1% level = peak spectrum

10% level = mean spectrum when emission is active

50% level = mean spectrum (all times)

Non-Thermal Radio emissions (Auroras)

Average flux density when emission is active		Peak flux density	
~10 ⁻¹⁹ Wm ⁻² Hz ⁻¹ @ 1AU		~10 ⁻¹⁸ Wm ⁻² Hz ⁻¹ @ 1AU	
\Rightarrow 20 10 ⁻¹⁵ Wm ⁻² Hz ⁻¹	@ 0	$\Rightarrow 20 \ 10^{-14} \ Wm^{-2}Hz^{-1}$	@ 0
$\Rightarrow 5 \ 10^{-15} \ Wm^{-2}Hz^{-1}$	@ Europa	$\Rightarrow 5 \ 10^{-14} \ Wm^{-2}Hz^{-1}$	@ Europa
\Rightarrow 2 10 ⁻¹⁵ Wm ⁻² Hz ⁻¹	@ Ganymede	$\Rightarrow 2 \ 10^{-14} \ Wm^{-2}Hz^{-1}$	@ Ganymede
\Rightarrow 0.6 10 ⁻¹⁵ Wm ⁻² Hz ⁻¹	@ Callisto	$\Rightarrow 0.6 \ 10^{-14} \ Wm^{-2} Hz^{-1}$	@ Callisto

INTERFERENCES FOR RADAR STUDIES?

- When the jovian sources are active and visible, peak flux density of radio emissions is evaluated to:
 - 20×10⁻¹⁴ Wm⁻²Hz⁻¹
 - 5×10⁻¹⁴ Wm⁻²Hz⁻¹
 - 2×10⁻¹⁴ Wm⁻²Hz⁻¹
 - 0.6×10⁻¹⁴ Wm⁻²Hz⁻¹ @ Callisto
- @ Io
- @ Europa
- @ Ganymede
- (Very) rough estimate of echo signal (20 W, 10 MHz) band, 200 km orbit, 1% reflexion): ~10⁻¹³ Wm⁻²Hz⁻¹ [numbers to be check with radar teams!]

VARIABILITY

- Visibility is predictable (we know where/when we could observe them)
- Occurrence is known on average (we know their periodicities)

But:

- sporadic
- absolute occurrence (*within visibility and periodicity patterns*) is not predictable.

VARIABILITY

Example (Cassini/RPWS)

SPORADICITY

[Zarka et al. JGR 2004]

- 1. Auroral sources (HOM and Non-Io-DAM)
 - located on magnetic field lines with footprints on main auroral oval.
 - variable emission angle [Hess et al. 2008]
 - Model periodicity: 9 hr 55 min = 1 Jovian rotation.
- 2. Io controlled sources (Io-DAM)
 - located on magnetic field line passing by Io (+ lead angle)
 - variable emission angle [Hess et al. 2008]
 - Model Periodicity: 17 day 13 hr 12 min = 1 Jovian rotation (9 hr 55 min) × 1 Io orbital period (42 hr 29 min).

AURORAL RADIO BACKGROUND FOR EJSM/JEO

AURORAL RADIO BACKGROUND FOR EJSM/JEO

AURORAL RADIO BACKGROUND FOR EJSM/JEO

AURORAL RADIO BACKGROUND FOR EJSM/JGO

IO-CONTROLLED RADIO BACKGROUND FOR EJSM/JEO

GALILEO/G1 FLYBY

[Kurth et al., GRL 1997]

GALILEO/G1 FLYBY

[Kurth et al., GRL 1997]

- Auroral emissions:
 visibility enveloppe is predictable.
 - at all times below ~22 MHz.
 - less than 50% of time above ~35 MHz.
 - no noise above ~42 MHz.
- Io controlled emissions:
 clean periods are predictable for entire frequency range.
- Otherwise: physical occultations.
 - Preliminary results, to be updated soon!
 - Next presentation in EGU 2010

(abstract submitted to session PS5.3)

LOCALIZATION & POLARIZATION

- All emissions are fully polarized (circular or elliptical).
- Emission localization is roughly predictable (Radio instrumentation can localized accurately)
 => link with RPW instrument for monitoring ? (probably too early to decide anything at this point)
- Apparent polarization is thus predictable
 => can this be used to discriminate radar echoes from natural radio emissions ?

DIPOLE ANTENNA DIRECTIVITY

- The radar antenna is a dipole: in its short antenna regime (when λ >> L, i.e. F < 2MHz for 10m antenna) such an antenna shows a null along the antenna axis.
- At higher frequencies, the antenna pattern is more complex, and should be modeled (*Graz team* (*H.O. Rucker*) *has been asked to look at that*) but the null in the antenna axis still exist.

CONCLUSION & PERSPECTIVES

- Echo signals may be of the order of peak flux density of non-thermal radio emissions.
- No interference from radiation belt synchrotron radiation.
- Possible use of physical occultation of jovian radio emissions, and of dipole antenna null.