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2/37JuMMP Investigation
• Jupiter Magnetosphere and Moons Plasma assessment study.

• Exceptionally strong science study team:
– >30 year heritage in studying rapidly rotating magnetospheres and moon- 

magnetosphere interactions.
– >40 year heritage in space plasma physics.
– Theory, empirical modelling, simulation and observation.
– Includes team members that have been involved in important recent 

discoveries at Jupiter and Saturn.

• Consortium has strong links with magnetometer, plasma wave, and 
UV teams and long-standing collaborations with many members in the 
PEP consortium.

• Strongly involved with JSDT and working groups.
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5/37Introduction
• Hot plasma populations (>~10 keV) provide most of the particle 

pressure in the jovian magnetosphere.

• However, cold plasma (<~10 keV) carries most of the density.

• Important for surface charging….
– Thermal charging currents for electrons and ram currents for ions.
– Secondary electron emission currents from electron and ion impact.

• As well as for the physics of the system…
– Centrifugal stresses and latitudinal plasma/current sheet structure.
– Seed populations for hot plasma and radiation belt distributions.
– Ram pressures and wave speeds.

• Jupiter’s environment has been visited by eight spacecraft !!

• In this talk I will (rather arbitrarily) consider cold plasma to be 
“measured” at less than a few 10s of keV/charge.



6/37The jovian magnetosphere

Bagenal/Bartlett



7/37Plasma in the jovian magnetosphere
• Distinct populations: cold plasma, hot plasma, radiation belt particles

• Cold plasma: kB T~1-1000 eV
• Hot plasma: kB T~10-100 keV
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8/37Cold plasma in Jupiter’s magnetosphere
• Ions:

– Thermal energies less than 1 keV.
– Often measured at several kV due to the 

bulk velocity (several 100 km s-1) of these 
populations.

• Electrons:
– Thermal energies less than several keV.
– Have little knowledge of distributions 

above 6 keV.

Frank et al. (2002)
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9/37Plasma composition
Solar wind H+, He2+, O6+

Jupiter H+, (H2+, H3+)+

Io O+, O2+, O3+, (O4+), (Na+, K2+), 
S+, S2+, S3+, S4+, (S5+)

Icy satellites (H2 O+, H3 O+), (H+, H2
+, O+, O2

+, 
Sx

+, SOx
+, COx

+, Na+, K+, Cl+, Cl-, 
possibly Mg+, Ca+ and organic 
fragment ions)

Undetermined (possibly 
Jupiter)

He+

Divine and Garrett (1983)

Geiss et al. (1992)
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10/37Effects of centrifugal force
• Rapid rotation of the magnetosphere 

 important centrifugal forces.

• Centrifugal scale heights (kT/m)1/2.
– Heavy cold species are confined to 

the equator - electrons can fill field 
lines.

• Quasi-neutrality  ambipolar electric 
field which pulls e- towards equator

• Simple case for single ion and 
electron population.

• Complex latitudinal distribution with 
multiple species and multiple charge 
states.

Maurice et al. (1997)
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12/37Solar wind and magnetosheath
• Solar wind (at least core) and 

magnetosheath populations are cold 
populations.

• Solar wind:
– ne =2-8105 m-3 (0.2-0.8 cm-3)
– Te =3-9 eV
– Te /Tp =2.5 Tp ~7-23 eV
– vSW =400 km s-1

– Suprathermal (halo) Te ~40 eV

• Magnetosheath:
– ne =0.9-2106 m-3 (0.9-2.0 cm-3)
– Te =20-50 eV (mean energy 40-60 eV)
– Suprathermal Te ~keV

Scudder, Sittler and Bridge (1981)
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14/37Plasma torus

John Spencer



15/37Plasma torus
• Neutral cloud in equatorial plane.

• Cold and warm plasma torii located in 
the centrifugal equator.

• Centrifugal equator located between 
equator and magnetic dipole equator.

Thomas et al. (2004)



16/37Plasma torus
• Spacecraft only make cuts through this 3D 

picture.

• Solve force balance along field lines 
(diffusive equilibrium) to extrapolate local 
measurements and generate 2D maps of 
density.

• Require:
– Ion composition [UV spectra].
– Ion and electron temperatures and 

anisotropies [Voyager/PLS].
– Measured densities [Voyager/PLS & PWS].

• Carried out by Bagenal and Sullivan (1981) - later discovered that 
input ion temperatures were in error by a factor of 2.

• Corrected in later calculations (Bagenal et al., 1984; 1994).



17/37Plasma inputs

Bagenal (1994)

Thermal inputs Suprathermal inputs



18/372D Maps and composition
• Electron density maximises around 2109 m-3.

• Evolution in dominant ion species.

• H+ is a minor species in the plasma torus, but 
is more important in the outer magnetosphere.

• H+ E/Q spectra from the cold torus often 
appear below the 10 eV threshold of V/PLS.
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21/37Magnetodisc morphology

• Models give zcs as function of 
System III longitude, local time, 
and radial distance.

• Latest model: Khurana and 
Schwarzl (2005).



22/37Electrons in the middle magnetosphere
• Scudder, Sittler and Bridge (1981) published significant analyses of the 

Voyager/PLS electron data.
• Voyager/PLS data up to 6 keV - Voyager/LECP starts at 28 keV.
• Core Maxwellian population with suprathermal tail - Kappa or bi-Kappa

Scudder, Sittler and Bridge (1981)

• Limited published data from 
Galileo/PLS (failure of electron 
sensor below ~ few keV)

• Little information available to 
close gap in understanding of 
the electron distribution 
between 6 and 28 keV.



23/37Electrons at CS crossing
• Densities vary between ~103 and ~105 

m-3.

• Temperatures between ~0.1 and 3 keV.
– Range probably due to bi-modal or 

Kappa-distributed electrons.
– Tc ~10-80 eV
– Th ~1 keV
– Te ~ne,c Tc +ne,h Th /(ne,c +ne,h )

• Electron density maximises at current 
sheet crossings due to increase in cold 
electron density.

• Hot electron density almost constant.

• Occasional appearance of cold blobs of 
plasma - linked to plasma transport?



24/37Ion spectra
• Dominant species appear to be M/Q=16 (either S++ or O+) and M/Q=1 

(H+) - M/Q=8 (O++) and 10.7 (S+++) are more minor species.
• Cold populations TH+ =20 eV and TO/S =500 eV but measured at kV due 

to bulk motion (supersonic).
• Evidence of hot ~10 keV H+ population. Frank et al. (2002)
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25/37Ion moments
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~8000 keV
~800 eV

~8 eV



26/37Outer magnetosphere
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• Characterised by disordered plasma - c.f. New 
Horizon’s observations in the deep magnetotail.

• Cushion region: Dayside region characterised by 
southward fields and numerous field “nulls” associated 
with increases in plasma density.
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28/37Trans-moon cold plasma environments

Kivelson et al. (2004)
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30/37Models
• Divine and Garrett (1983) model.

– Uses incorrect ion reduction in Io PT and map has shown to be 
inconsistent with Ulysses data.

– Assumes populations are isotropic drifting Maxwellians.
– Fixed azimuthal plasma velocity with no local time asymmetries or local 

structure.
– Old magnetodisc geometry model.

• Revisions:
– New magnetodisc morphology (Khurana and Schwarzl, 2005).

– Lots more data and “meta-models” (e.g., Bagenal, 1994; Moncuquet et al., 
2002) available now on which to base a new cold plasma model.

– However, Voyager and Ulysses electron data sets remain the most 
complete and published low energy electron data at Jupiter.

– Critical to consider the possible impacts of this - i.e., will s/c potential 
calculations in JOREM/Spenvis be incorrect?
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32/37Some key cold plasma science questions
• How is iogenic plasma accelerated from ~1 eV to >100 keV ?

– E.g., stochastic acceleration, turbulence, and Speiser-type acceleration.

• What is the role of the solar wind in driving and shaping the jovian 
magnetosphere?

– Track ion velocity, composition and temperature of different flows.

• What is the cushion region and how is it formed?

• How is plasma transported from the Io PT and through the magnetodisc?

• How is cold plasma lost from the magnetosphere?
– All lost in the tail - or ejection through the dayside magnetopause?
– Tearing in the magnetodisc?

• What is the nature of plasma flow around Ganymede’s magnetosphere?

• Magnetospheric stress balance: what roles do centrifugal stress and cold 
plasma anisotropies play?
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34/37Spacecraft charging

• Figure below shows Cassini CAPS/ELS data from a period where the 
spacecraft was charged to a positive potential.

• Changes in potential with ambient conditions clearly visible: 3 - 40 V.

• When charged to a positive potential the distribution can be shifted in 
energy (in accordance with Liouville’s theorem) to provide a corrected 
data set.



35/37Potential correction limitations
• Measurements (with particle spectrometers) down to a few eV affected by 

spacecraft potential - uniform potential can be corrected.
• However, large positive potentials can produce density underestimates using 

this technique - depends on the relative values of eSC and kB Te .
• Non-uniform potential must be characterised - low energy bulk velocities and 

plasma frame anisotropies won’t be reliable (e.g., Scime, Phillips and Bame, 
1994).
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36/37Surface charging validation



37/37Summary
• Much of the high pressure action is in the hot >10 keV populations there 

is still a lot of interesting physics and open questions for the cold plasma.

• Variety of species and charge states and strong radial evolution of these 
populations.

• Challenges due to large dynamic (n: 103-109 m-3) and energy ranges and 
temporal scales

• Surface charging and particularly surface potential structure could 
compromise low energy cold plasma measurements <~10 V (direction 
and under-resolution).
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Backup slides



39/37Spacecraft charging
Charging currents [c.f., Whipple, 1981]:

• Thermal electron and ion: j~n(kB T/m)1/2

– Charge positive and negative respectively but generally kB T/m is much 
larger for electrons than for ions and so the thermal electron current 
dominates.

– This assumes Maxwellian distributions but we know that the distributions 
are power-laws at high energies.

• Ion ram currents: jram ~nv
– Produces negative charging - weak dependence on composition.

• Secondary electron and ion
– Depend on energy of primaries - region between 6 and 28 keV is largely 

unexplored - or at best unpublished.



40/372D Maps
• 2D maps from 

diffusive equilibrium 
calculations.

• H+ is considered a 
minor species and is 
distributed fairly 
evenly in latitude.

• Contributing 10% to 
the e- density at the 
(cen) equator and 
50% at 1.5 RJ .
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41/37Non-Maxwellian distributions
• Turns out that non-Maxwellian electron distributions are important - 

Ulysses electron observations incompatible with Bagenal (1994) 
model.

• Moncuquet et al. (2002) demonstrated that by representing the 
electron populations using Kappa distributions the observed increase 
in Te could be reproduced.

• Changes scale heights and temperature profiles - small changes to 
density.

• Ion distributions are Maxwellian in the cold torus but not necessarily so 
in the warm torus.



42/37Typical ne and Te
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