An Update on Penetrators for Ganymede and Europa

Presented by Rob Gowen, MSSL/UCL on behalf the penetrator Consortium

Alan Smith¹, Patrick Brown², Philip Church³, Andrew Coates¹, Ian Crawford⁴, Veronique Dehant⁵, Jeremy Fielding⁶, Dominic Fortes⁷, Yang Gao⁸, Andrew Griffiths¹, Peter Grindrod⁷, Leonid Gurvits⁹, Adrian Jones⁷, Katarina Milijkovic⁷, Peter Muller¹, Lester Waugh⁶, Nigel Wells¹⁰

 Mullard Space Science Laboratory, University College London, UK. 2: Imperial College, London, UK. 3: QinetiQ Ltd., Fort Halstead, UK. 4:Birkbeck College, University of London, UK.
 Royal Observatory, Belgium, 6: Astrium Ltd., Stevenage, UK. 7: University College London, UK. 8: Surrey Space Centre, Guildford, UK. 9: Joint Institute for VLBI in Europe (JIVE), Dwingeloo, The Netherlands. 10: QinetiQ Ltd., Cody Technology Park, Farnborough, UK.

Contents

□ Science

- Capabilities
- Synergy
- Astrobiology
- Instruments
- Implementation
 - Ganymede<->Europa Comparison
 - Current development activities
 - Penetrator System Study

Summary / Way forward

UC

Science Objectives/Synergy

Provide Science not possible from orbit

Direct material sampling & identification -> astrobiology, chemistry
Determine deep internal body structures, quake magnitudes and frequencies
Surface mechanical, electrical & environment properties

Provide Synergies with Orbiter measurements

Identify/confirm actual surface chemicals indicated by orbital observations
Orbital instruments can extend observations at specific surface locations globally to whole body.

•Help interpret ground penetrating radar data.

Provide Synergies with observations of other bodies

•Can compare Ganymede & Europa surface measurements (astrobiology, chemical species...)

•Improve interpretation & confidence of orbital measurements of other Jupiter moons.

New Science + Ground truth

Astrobiology material search...

[≜]UCL

er

Diagram adapted from K.Hand et. al. Moscow'09, who adapted it from Figueredo et al. 2003

Candidate Scientific instruments

- 19 candidate instruments
- grouped according to scientific area
- instruments marked in yellow contribute to both astrobiology & geophysics
- So can make selection which includes both geophysics and astrobiology

Geophysics Ocean/interior Astrobiology habitat	Geophysics Surface/chemistry Astrobiology biomarkers	Environment Astrobiology relevant
Seismometer Engineering tiltmeter	Mass spectrometer	Light level monitor
Magnetometer	Gravimeter	Radiation monitor
Radio beacon	X-ray spectrometer	Thermal sensor
Geophysical tiltmeter	Microscopic imager	
Heat flow probe	Astrobiology (pH,redox)	
Microphone	Descent camera	
	Accelerometer	
	Dielectric/permittivity	

UCI

Potential Science Return

Geophysics Ocean/interior Astrobiology habitat	Geophysics Surface/chemistry Astrobiology biomarkers	Environment Astrobiology relevant
Habitability. Subsurface ocean characterisation - depth	chemical distribution: astrobiological cf. geological origin. (even if chemical bonds completely degraded due to heavy radiation)	Radiation level (->depth) combine with age to expected level of biochemical degradation
 Ocean currents salinity 	Determine specific biochemical presence (if little radiation degradation)	Temperature Diurnal variation (indication of depth)
Quake frequency and magnitude distribution and tidal coordination	Lifeform shape <i>(even if heavy radiation degradation)</i> UV flouresence <i>(if little radiation degradation)</i>	
Other subsurface features	(pH,redox) <i>(if little radiation degradation)</i>	
	Isotope ratios (even if heavy radiation degradation)	
	Material layering and strength	

Implementation

EJSM 3rd Workshop, ESTEC 18-20 January 2010

Ganymede⇔Europa Comparison

Differences

Ganymede

Geophysics 1'st Science priorityAstrobiology 2'nd Science priority

High radiation environmentCat II planetary protection

•200km delivery/comms orbit
•Higher delivery Δv ~2km/s
•Prefer no RHUs

Commonalities

Europa

Astrobiology 1'st Science priorityGeophysics 2'nd Science priority

Extreme radiation environmentCat IV planetary protection

100km delivery/comms orbit
Lower delivery Δv ~1.4km/s
RHU's OK

- similar impact materials and temperatures
- common penetrator shell, internal architecture, and impact survival
- common penetrator subsystems (comms, processing, power) (rad. differences ?)
- some common scientific instruments (the more the better -> synergy).
- common polar orbiter (comms) (orbital period: ~2.5 hrs Ganymede,~2.1 hrs Europa)

Penetrator Development Activities

2 main activities :-

Penetrator System Study

- ESA funded study (special provision for UK)
- Primarily for icy moons of Jupiter, with strong <u>Ganymede</u> focus.
- Completes July 2010
- Currently less than 3 months into 9 month study (preliminary results)
- Study requirement for 2 week Ganymede observational lifetime, and to assess battery only solution.

□ Instrument TDA (Technical Development Activities)

- ESA coordinated
- Nationally funded
- Target TRL 5-6 by end 2012

UCI

Penetrator System Study

Objectives

- feasible, low risk, science capability
- resource estimates (mass, power, volume, telemetry)
- include resource margins, high TRL

Inputs/Guidelines

- total system mass <100 kg
- prioritized instruments with geophysics highest priority

□ System study activities and status

- Preliminary assessment of requirements & system design complete.
- Baseline scenario agreed and studies continue..

Impact site selection & characterisation

Penetrator delivery system & spacecraft attachment

Penetrator body and subsystems

Environment (thermal, radiation & planetary protection)

UCL

Model Payloads ?

Ganymede penetrator

- payload -> desire geophysics oriented
- All geophysics instruments selected + radiation monitor and thermometer
- Ad-hoc use of baselined UHF penetrator comms system as radio beacon for tidal displacement measurements not possible *

(*because of sensitivity limitations with low UHF frequency. Alternative radio science experiment is being considered to address science that would have been performed by radio beacon. Will need to address key issues of sensitivity, power, comms visibility, oscillator stability, mass/power etc)

Europa penetrator

(not part of system study)

- payload -> desire astrobiology oriented
- Require chemical analysis of local material
- Requires penetrator design to be 2-part (if no RHUs)
 - i. nose section: short lifetime instruments -> astrobiology
 - ii. rear section : long lifetime instruments -> e.g. seismometer.
- Probably a chute for surface material ingress through small aperture in penetrator (to be analysed)

EJSM 3rd Workshop, ESTEC 18-20 January 2010

Ganymede Model Payload

- 8 Ganymede selected instruments marked with *
- Instruments include all astrobiology & geophysics science fields
- No surface material chemistry/astrobiology instruments (simplifies architecture and eliminates additional lifetime problems)

Geophysics Ocean/interior Astrobiology habitat	Geophysics Surface/chemistry Astrobiology biomarkers	Environment Astrobiology relevant
* Seismometer * Engineering tiltmeter	Mass spectrometer	Light level monitor
* Magnetometer	Gravimeter	* Radiation monitor
Radio beacon	X-ray spectrometer	* Thermal sensor
* Geophysical tiltmeter	Microscopic imager	
Heat flow probe	Astrobiology (pH,redox)	
Microphone	* Descent camera	
	* Accelerometer	
	Dielectric/permittivity	

[•]UCl

Ganymede Model Payload Resources

Science Payload

- 1. Accelerometer
- 2. Magnetometer
- 3. Seismometer
- 4. Microphone
- 5. Geophysical tiltmeter
- 6. Engineering tiltmeter
- 7. Thermal sensor
- 8. Radiation monitor

PDS Payload

1. Descent camera

Resources are sized for lifetime requirement of 2 Ganymede orbits

EJSM 3rd Workshop	ESTEC 18-20	January 2010
-------------------	-------------	--------------

Penetrator Payload Resources	Value	Value including 20% maturity margin
mass	1.08 kg	1.3 kg
energy	53.5 Whr	64.2 Whr
volume	462 cm^3	554 cm^3
telemetry	7.6 Mbits	9.1 Mbits

PDS Payload Resources	Value	Value including 20% maturity margin
mass	0.16 kg	0.19 kg
energy	0.05 Whr	0.06 Whr
volume	27 cm^3	32.4 cm^3
telemetry	2.0 Mbits	2.4 Mbits

Penetrator Thermal Design

- External environment very cold (~80K) with moderate conductivity (significant water ice component)
- Requires (vacuum flask) design to reduce heat losses to achieve operational lifetime of 2 weeks just using battery power (no RHUs)

Insulation	Heat loss	Lifetime
Solid layer	~ 50 Watts	few hours
Granular	~ 10 Watts	day
Vacuum	< 1 Watt	2 weeks

- Design solution identified, including non-conductive links for comms and PDS interfaces
- More difficult to implement instruments which require external access

Europa Penetrator Concept

Not part of system study (applied concept of system study to Europa)

Long lifetime bays

(vacuum isolated)

Short lifetime bays

(enable contact with environment)

Penetrator

Communications (QinetiQ)

- UHF baseline
- Patch aerial protected by radome at rear of penetrator
- No conductive path to aerial
- Will perform surface materials attenuation assessment

□ Penetrator (MSSL/UCL)

- Preliminary mechanical design performed (which accommodates subsystems and model payload)
- Preliminary electronic system design performed (including harnessing, dpu, pcu)

Impact survival (QinetiQ)

- To perform strength of materials assessment (titanium alloy, steel)
- Design for shallow penetration to minimise communications signal attenuation.

UC

Preliminary Penetrator design

Length ~ 0.5*m*; *Radius* ~0.04*m*;

EJSM 3rd Workshop, ESTEC 18-20 January 2010

[•]UCL

Penetrator Delivery

Penetrator Delivery (Astrium)

- Optimal delivery is from circular orbit around Ganymede (for mass, communications, science).
- Bipropellant delivery system solution design.
- Orbiter can be visible for comms during descent (enables HK to confirm correct delivery milestones)

[±]UC

Impact site selection criteria

Patterson, Paranicas, Prockter, 2009

UCL

Ganymede Penetrator System

~1.3 kg	Payload (including 20% margin)
~10.6 kg	Penetrator (including 20% margin)
~ 63 kg	Delivery System*
within100 kg [ESA study limit]	Study total mass allocation only sufficient to deliver a single penetrator to Ganymede ** (does not include any additional JGO fuel)

* expect Europa delivery system mass to be significantly less due to much lower ΔV .

** Is for a batteries only solution to provide 2 weeks operational lifetime.

EJSM 3rd Workshop, ESTEC 18-20 January 2010

Summary / Way forward

Summary

- Identified design concept for a batteries only solution for a 2 week operational lifetime.
- Selected a modest 1.3kg payload within an 11kg penetrator, plus a 63kg delivery system for Ganymede.
- Can only deliver a single penetrator within 100kg [ESA study limit] (excluding any additional JGO propellant)
- Concept realised for a Europa penetrator (not part of system study)

Way Forward

- Continue current study, and improve definitions and allow reductions of 20% mass margins where appropriate.
- For significantly reduced mass will need to look at alternative solutions and their TRL (payload, lifetime requirement, RHU, subsystem elements, delivery system)
- Need to produce similar level of analysis for Europa penetrator.

[±]UC

- End -

EJSM 3rd Workshop, ESTEC 18-20 January 2010

Europa Candidate Impact Sites

Candidate sites of potential upwelled biogenic material

- a) gray dilational bands [Schenk, 2009]
- small slopes (average 5±2°,15%>10°)
 ~20km wide.
- other regions analysed slopes<30°
- age ? (effect of radiation)
- b) chaos, lenticulae regions
 - [Proctor et al., Moscow, Feb09].
 - reasonably flat/smooth in some areas
 - young.

Galileo image

Ganymede example Impact Area -2

• Ea Crater floor

Dark terrain likely dominated by non-ice components

Impact Site – B: 17.7°N

region	Galileo Regio
location	17.7°N, 148.7°W
size	10x20km
slopes	3 to 25°
hazards	~10-40%
temperature	90-130K diurnal cycle

High resolution Galileo mosaic 77m/pixel within Voyager image EJSM 3rd Workshop

Impact site characterisation parameters

Parameter	Comments
Target area	
 Impact ellipse 	Impact on GNC
 Impact slopes 	Ricochet avoidance
Hazards	Avoid fissures, craters, etc, within impact site
Material Properties	
 Impact mineralogy 	Harder impact, Ricochet avoidance, RF attenuation
 Impact hardness 	Harder impact, Ricochet avoidance, RF attenuation (backfill)
 Thermal conductivity 	Higher thermal losses
Chemical composition	RF attenuation
 Dielectric properties 	RF attenuation
Environment	
Temperature	Thermal losses
 Radiation 	Equipment survival

Ganymede Impact Area -1

≜UCL

Impact Site - A: Equatorial

- Plank line ridge PLT2 in lineated terrain
- Bright terrain likely dominated by water ice
- Suggested relatively old (degraded craters)

region	Uruk Sulcus
location	0.8°N, 160°W
size	5x5 km up to 20km
slopes	3 to 20°
Hazards	~30%
temperature	100-150K diurnal cycle

FIG. 5. Detail of lineated grooved terrain in Uruk Sulcus (units PLT2 and PMRT1). Examples of (A) plank-like ridges. Examples of the ubiquitous small-scale dark lineations (B) are highlighted where they transect preexisting craters. These dark lineations define small-scale blocks between them. Prominent troughs (C and D) are marked across their widths and typically contain multiple subparallel small-scale blocks; trough D shows a ramp-like termination style toward the southwest. Note the abundance of craters, some of which are degraded, suggesting a relatively old age for the NE-SW trending PLT2 and PMRT1 units. In contrast, the NW-SE trending parallel ridged terrain unit (PRT2) shows few large craters. Boundary relationships suggest that the parallel ridged terrain formed at the expense of the lineated grooved terrain units. **[IR4: Pappalardo et al, 1998]**

EJSM 3rd Workshop, ESTEC 18-20 January 2010

Portion of Galileo Regio (old dark terrain) Note smoother area on right

EJSM 3rd Workshop, ESTEC 18-20 January 2010