A Microseismometer for Penetrator Deployment

Tom Pike, Werner Karl, Afric Delahunty Electronic and Electrical Engineering Imperial College London

lan Standley, *Kinemetrics Inc., Pasadena CA*

Simon Calcutt, Atmospheric, Oceanic and Planetary Physics, Oxford University

Contents

Science

- Internal structure of Europa and Ganymede
- Models and goals of a seismic investigation
- Science and engineering requirements for a penetrator-deployed microseismometer

Instrument

Imperial College

London

- Limits to miniaturisation of a seismometer
- Fabrication and perfomance of a silicon microseimometer
- Testing for penetrator deployment

Interiors of Ganymede and Europa – current best models

Ice cracks as seismic sources

Unveiling the interior structure

Synthesised Power Seismograms from Acoustic Sounding

Love-wave propagation in an ice sheet

Science return from a single-station seismic deployment

- Characterisation of the ambient vibration spectrum of Ganymede and Europa
 - Stress evolution and release over diurnal cycle certain
 - Level of tectonic activity (Ganymede) certain
 - Micrometeorite impact rate possible
- 1-D profile of the interior of the Ganymede and Europa:
 - Ice thickness probable
 - Presence of interior ocean probable
 - Depth of ocean probable
 - Size of core probable (Europa)/possible (Ganymede)

Instrument science requirements for a single-station seismic deployment

- Triaxial system
- Bandwidth from 0.02 to 100 Hz
- 10 nm/s sensitivity in bandwidth 1 ng at 1 Hz
- 100 dB dynamic range, 16 to 18 bits or greater
- Several diurnal cycles lifetime

Engineering requirements for deployment and operation

- Low mass, and especially volume
- Low power

Imperial College

London

- Robust enough to withstand entry shock of up to 40,000 g
- Operation under any tilt conditions

Accelerometer performance vs volume

After Park, 2006 and others

The limits to miniaturisation

Mechanical noise

For a suspension with loss mechanisms the mechanical acceleration noise floor is given by

$$a_n = \sqrt{\frac{4kT\omega}{mQ}}$$

where

T is the temperature

- *Q* is the quality factor of the suspension,
- ω is the resonant frequency *m* is the proof mass

Electronics Noise

The voltage noise of the first amplifier of the position transducer also introduces acceleration noise

$$a_e = \frac{\omega^2}{\partial V / \partial x} V_n$$

where

 $\partial V/\partial x$ is the transducer gain V_n is voltage noise of the amplifier

Gravity

We need to measure the vertical component against a background acceleration of 0.13 or 0.15 g

The suspension needs to have sufficient room to sag $x = g/\omega^2$

Suspension fabrication

Use deep reactive-ion etching (DRIE) to machine through silicon wafer to form the suspension, high m, low ω , high Q

Suspension design – frames for rigidity at low ω

Imperial College London Rejection ratio of unwanted modes

Displacement Transducer – Lateral Capacitive Array

Cross section

Displacement Transducer - Gain

Electromagnetic feedback actuation -high m, Q

Feedback Control – selecting the operating point

Performance – earthquake detection

First field testing of microseismometer in June 2008 at Kinemetrics, Pasadena Detection of both local and teleseismic events (Sandwich Islands: Δ = 121° Mw = 7)

Resolution from ambient seismic noise

Accelerometer performance vs volume

Volume/mm³

Future work

Volume/mm³

Packaging for Shock

Pendine test

Shock Mitigation Results

•Evacuation released the suspensions from sublimant encapsulation

- quality factor, Q, returned to pretest levels Demonstrated potential survivability of silicon

suspensions at very high shock levels

10

20

30

Pressure (Pa)

40

10000

Quality Factor

1000

0

Unpackaged

50

60

Comparison with existing seismometers

Summary

• A penetrator-deployed seismometer would produce unique, critical and complimentary information on the internal structure of Europa and Ganymede

• A microseismometer is under development under a UK TDA to meet both the science and engineering requirements of this demanding application reaching TRL 5 by 2012

Thanks to Kinemetrics Inc. and the UK Science and Technology Facilities Council for funding Imperial College London

