Euclid

Imaging the Dark Universe with Euclid

Simon Lilly (ETH Zurich)

on behalf of

Alexandre Refregier (CEA Saclay) for the Euclid Imaging Consortium

- the nature of the Dark Energy
- the nature of the Dark Matter
- the initial conditions (Inflation Physics)
- modifications to Gravity
- \rightarrow Euclid's primary science objectives
- → Secondary objectives: Legacy Science

Primary Science objectives

EUCLID concept = all-sky (2π sr) Vis+NIR imaging and spectroscopic survey

ESTEC

Primary EUCLID cosmological probes

- Weak Lensing Tomography
- Baryonic Accoustic Oscillations

Additional EUCLID cosmological probes:

- Cluster Counts
- Integrated Sachs-Wolfe Effect (correlation with CMB)
- Redshift space distortions

DUUG

æ

Weak Lensing Shear Measurement

Euclid

saclay

Distortion matrix:

$$\Psi_{ij} = \frac{\partial \delta \theta_i}{\partial \theta_j} = \int dz \, g(z) \frac{\partial^2 \Phi}{\partial \theta_i \partial \theta_j}$$

lensed background galaxies

mass and shear distribution

 \Rightarrow correlated image distortions on sky produce WL power spectrum $C_1(\theta,z)$

Weak Lensing Tomography

Lensing signal $C_l(\theta, z)$ depends on:

- shape of total matter density fluctuation spectrum
- angular diameter distance in lensing equation for lensing amplitude
- angular diameter distance for angular scale of density spectrum
- growth factor g(z) of dark matter density fluctuations

COSMOS 1.7 deg² HST/ACS imaging as a prototype for Euclid with 1/10,000 of area

COSMOS Dark Matter Map compared with (visible) galaxy distribution WL tomography measurements: COMBO17: Bacon et al. 2005 CFHTLS: Sembolini et al. 2006 COSMOS/HST: Massey et al. 2007b

Euclid

Euclid Conference

Current constraints:10% on constant w For definite answers on DE: need to reach a precision of 1% on (varying) w and 10% on w'

 \rightarrow Objective for Euclid WL

Requirements for precision Weak Lensing

(1) <u>Statistics</u>: optimal survey geometry (in a fixed survey time) is "wide rather than deep"

 \rightarrow need 20,000 deg² to reach 1% precision on w

(2) <u>Systematics</u>: must reduce the systematics in shear measurement *by almost two orders of magnitude*

 \rightarrow highly stable PSF spatially and temporally enabling 50 bright stars to calibrate PSF plus a PSF < typical ground-based seeing to use small faint galaxies

This requires access to space

Shear Measurement

Space:

Stable PSF \rightarrow lower residual systematics from better calibration with finite number of available stars Smaller PSF \rightarrow better resolved small galaxies \rightarrow less "deconvolution"

Ground PSF calibration and deconvolution

Euclid Conference

Euclid

(3) Photo-z: need redshifts z to make bins for tomography (and deal with intrinsic alignment effects) → σ_z < 0.05(1+z).
•must be <u>photo-z</u> for 2 billion+ galaxies
•need photometry (AB ≥ 24 from visible to near-IR). Visible can be done from ground (at substantial cost savings), but the essential near-IR at this depth over the whole sky <u>requires access to the low near-IR background of space</u>.

Abdalla et al. 2007

Euclid Imaging Survey(s)

<u>Wide Survey</u>: Extragalactic sky (20,000 deg² = 2π sr)

- Visible: Galaxy shape measurements to $RIZ_{AB} \le 24.5$ (AB, 10 σ) at 0.18 arcsec FWHM, yielding 35 resolved galaxies/arcmin², with a median redshift $\langle z \rangle \sim 0.9$, for primary weak lensing tomography experiment.
- NIR photometry: Y, J, H \leq 24 (AB, 5 σ PS), yielding photometric redshifts 0.05(1+z) together with ground based complement (e.g. PanStarrs-2, DES)

<u>Deep Survey</u>: approx 30 deg² at ecliptic poles

- Monitoring of PSF drift (40 repeats at different orientations over life of mission
- Produces +2 magnitude in depth for both visible and NIR imaging data.

Possible additional Galactic surveys:

Short exposure Galactic plane and high cadence microlensing extra-solar planet surveys could be easily added within Euclid mission architecture.

Complementary cosmological probes within the Euclid Imaging Survey

Cluster counts (with eRosita, Planck and other SZ surveys)
Integrated Sachs-Wolfe effect (ISW)
BAO/P(k) large scale structure with photo-z

Excellent complementarity with ENIS spectroscopic surveys (CAT)

- •Determination of visible-DM bias *b*
- •Calibration of photo-z
- •Independent and better BAO/P(k) from spectroscopy
- •Complementary growth of structure through redshift space distortions

	Δw_p	Δw_a	$\Delta\Omega_m$	$\Delta \Omega_{\Lambda}$	$\Delta \Omega_b$	$\Delta \sigma_8$	Δn_s	Δh	DE FoM
Current + WMAP	0.13	-	0.01	0.015	0.0015	0.026	0.013	0.013	~ 10
Planck	-	-	0.008	-	0.0007	0.05	0.005	0.007	-
Weak Lensing	0.03	0.17	0.006	0.04	0.012	0.013	0.02	0.1	180
EIC probes	0.018	0.15	0.004	0.02	0.007	0.009	0.014	0.07	400
EIC + Planck	0.013	0.08	0.001	0.004	0.0005	0.0016	0.003	0.002	1000

Evolution of cosmology with Euclid imaging

Euclid will challenge all sectors of the cosmological model:

•Dark Energy: w_p and w_a with an error of 2% and 13% respectively (no priors)

•Dark Matter: test of CDM paradigm, precision of 0.04eV on sum of neutrino masses (with Planck)

•Primordial Initial Conditions: constrain amplitude, slope and higher order parameters of primordial power spectrum, constrain primordial non-gaussianity

•Gravity: Distinguish GR from simplest modified Gravity theories by reaching a precision of 2% on the growth exponent $\gamma (d \ln \delta_m/d \ln a \propto \Omega_m^{\gamma})$

Euclid Imaging Legacy: Imaging the Universe Euclid

Imaging Legacy Science

- Map the relation between Galaxy Mass and Light: correlation of WL mass map with galaxy distribution and properties
- Constrain the physical drivers of star formation: galaxy morphologies and masses; SNe rate (Detection of ~3000 Type Ia and Type II supernovae in deep survey)
- **High-z objects:** Using the Ly-dropout technique in MD survey, detect 10^{3-4} star forming galaxies at $z \sim 8$, 10^{2-3} at $z \sim 10$, maybe ~10 at $z \sim 12$; also detect 10^{2-4} quasars at $z \sim 7$, and 10^{1-3} at $z \sim 9$. These will be the brightest in sky for follow-up.
- Galaxy clusters: Mass-detection of 40,000 clusters at 0.3 < z < 0.7, well-matched to Planck SZ and eRosita cluster sample, and NIR detection of 10^{2-3} Virgo-like clusters and 10^{3-4} 10^{13} M_{\odot} at z > 2,
- Strong-lensing systems: ~10⁵ galaxy-galaxy lenses, ~10³ galaxy-quasar lenses, 5000 strong lensing arcs in clusters

Euclid Conference

Add-on? Search for Planets with Microlensing Euclid

Microlensing survey: 4 deg² in the bulge, visited every 20 minutes over 3 months (Y,J,H ~ 22 per visit), monitor $2x10^8$ stars

 \rightarrow Detect ~30 Jupiters, and ~5 Earth Mass planets in the habitable zone

Euclid Mission Baseline

Mission elements:

- L2 Orbit ٠
- 4-5 year mission
- Telescope: three mirror astigmat (TMA) with 1.2 m primary
- Instruments:
- **Imaging:**
 - Visible imaging channel: 0.5 deg², 0.10 arcsec pixels, 0.18 arcsec PSF FWHM, single broad RIZ (0.55-0.92µm), CCD detectors \rightarrow galaxy shapes
 - NIR photometry channel: 0.5 deg², 0.3 ____ arcsec pixels, 3 bands Y, J, H (1.0-1.7µm), HgCdTe detectors, \rightarrow photometry, photo-z's
- Spectroscopy: NIR Spectroscopic channel: 0.5 deg², R=200-600, 0.9-1.7 μ m, \rightarrow redshifts
- baseline: slitless
- option: multi-object slit-based with Digital Micro-Devices (DMD)

ESTEC

EIC delivered data pack:

Design, Development Plan, Management & Cost + supporting Documents, EIC Science Requirements, Radiometric and NIP documents, joint EIC-ENIS ground segment document

EIC Organisation

20

20

see EIC-ENIS Ground Segment Document

Weak Lensing Cosmology

Legacy Imaging Science

Adam Amara

Marcella Carollo Isabel Hook Jean-Philippe Beaulieu

Photo-z requirements

Simon Lilly

Technical design

Jerome Amiaux

Image performance

Tom Kitching

- The Euclid concept: a high-precision cosmological survey of imaging and spectroscopy, aimed at Weak Lensing and BAO, over 2π sr, with simultaneous matched survey speeds within a 5-year M-class mission envelope.
- Euclid Imaging Survey is optimised to achieve definitive constraints on Dark Energy through weak lensing tomography, addressing all sectors of the cosmological model → analogous to CMB for the late-epoch DE dominated Universe 0 < z < 2.
- Euclid Imaging Consortium maintains a strong link between science and instrumentation, and tight control of systematics that are essential for success in weak lensing.
- **Ground-based photometric surveys** offer cost-effective route to photo-*z* performance
- Euclid ENIS spectroscopy provides strong synergy and complementarity for both cosmological probes and photo-*z* calibration.
- Euclid Legacy Surveys from the "all-sky" and "deep" VIS/NIR imaging survey provide breakthrough resource for galaxy evolution, high-*z* objects, clusters, strong lensing and the Galactic halo, with potential survey extensions, also exoplanets and the Milky Way disk.