

Baryon Acoustic Oscillations Part I

Yun Wang (on behalf of the Euclid collaboration)

ESTEC, November 17, 2009

Outline

- Introduction: BAO and galaxy clustering
- BAO as a standard ruler
- BAO as a robust dark energy probe
- Euclid galaxy redshift survey

The Origin of BAO

- At the last scattering of CMB photons, the acoustic oscillations in the photon-baryon fluid became frozen and imprinted on
 - CMB (acoustic peaks in the CMB)
 - Matter distribution (BAO in the galaxy power spectrum)
- The BAO scale is the sound horizon scale at the drag epoch, when photon pressure can no longer prevent gravitational instability in baryons (occurs slightly after photon-decoupling because Ω_b is small). WMAP 5 yr data give

 $s = 153.3 \pm 2.0 \text{ Mpc}, \quad z_d = 1020.5 \pm 1.6$ (Komatsu et al. 2009)

Baryon acoustic oscillations have been measured:

Galaxy 2-pt correlation function

Galaxy power spectrum

Eisenstein et al. (2005)

Yun Wang, 11/17/2009

Percival et al. (2009)

BAO as a Robust Dark Energy Probe

- The observational requirements are least demanding among all methods.
 - Redshifts and positions of galaxies are easy to measure.
- The systematic uncertainties are small (<<1%).
 - Improvements require only theoretical progress in numerical modeling of data.
 - Latest: BAO scale shift due to systematics < 0.3%, can be removed to <0.015% (NL & z-space distortions only, galaxy bias not yet included) Seo et al. 2009, arXiv:0910.5005

BAO Systematic Effects

- Galaxy clustering bias (how light traces mass)
 - Could be scale-dependent
 - Can be modeled numerically for a given galaxy sample selection (Angulo et al. 2008)
- Redshift space distortions (artifacts not present in real space)
 - Small scales: a smearing that can be easily modeled
 - Large scales: they boost BAO, and can be used to probe $f_g(z)$

(Guzzo talk will give the details).

- Nonlinear gravitational clustering (mode-coupling)
 - small scale information in P(k) destroyed by cosmic evolution due to mode-coupling (nonlinear modes); intermediate scale P(k) also altered in shape
 - Its effect can be reduced by
 - (1) Density field reconstruction (*Eisenstein et al. 2007*)
 - (2) Extracting "wiggles only" constraints (discard P(k) shape info)
 - (3) Full modeling of correlation function (Sanchez et al. 2008)

Euclid Galazy Redshift Survey

- empirical Hα emitter count
- bias from N-body simulations

Geach et al. 2009, arXiv:0911.0686 Orsi et al. 2009, arXiv:0911.0669

Euclid Galaxy Redshift Survey

DMD versus slitless

Orsi et al. 2009, arXiv:0911.0669

How We Probe Dark Energy

- Cosmic expansion history H(z) or DE density $\rho_X(z)$: tells us whether DE is a cosmological constant $H^2(z) = 8\pi G[\rho_m(z) + \rho_r(z) + \rho_X(z)]/3 - k(1+z)^2$
- Cosmic large scale structure growth rate function fg(z), or growth history G(z):

tells us whether general relativity is modified

$$f_g(z) = d\ln \delta / d\ln a, \ G(z) = \delta(z) / \delta(0)$$
$$\delta = [\rho_m - \langle \rho_m \rangle] / \langle \rho_m \rangle$$

Observational Methods for Dark Energy Search

- *SNe Ia* (*Standard Candles*): method through which DE has been discovered; independent of clustering of matter, probes *H*(*z*)
- **Baryon Acoustic Oscillations (Standard Ruler):** calibrated by CMB, probes H(z). Redshift-space distortions from the same data probe growth rate $f_g(z)$.
- Weak Lensing Tomography and Cross-Correlation Cosmography: probes a combination of growth factor *G*(*z*) and *H*(*z*)
- *Galaxy Cluster Statistics:* probes *H*(*z*)

The Drag Epoch

- The BAO scale is the sound horizon scale at the drag epoch, when photon pressure can no longer prevent gravitational instability in baryons.
 - Epoch of photon-decoupling: $\tau(z_*)=1$
 - Drag epoch: $\tau_b(z_d)=1$, $z_d < z_*$
 - The higher the baryon density, the earlier baryons can overcome photon pressure.
 - $R_b = (3\rho_b)/(4\rho_\gamma) = 31500\Omega_b h^2/[(1+z)(T_{CMB}/2.7K)^4]$
 - $z_d = z_*$ only if $R_b = 1$
 - Our universe has low baryon density: $R_b(z_*) < 1$, thus $z_d < z_*$ (Hu & Sugiyama 1996)

 $f_g = d\ln \delta / d\ln a$ $\delta = (\rho_m - \langle \rho_m \rangle) / \langle \rho_m \rangle$

Wang (2008)

Model Selection Using Bayesian EvidenceBayes theorem: P(M/D) = P(D/M)P(M)/P(D)Bayesian edidence: $E = [L(\theta)Pr(\theta)d\theta$

:likelihood of the model given the data.
Jeffreys interpretational scale of ΔlnE between two models: ΔlnE<1: Not worth more than a bare mention. 1<ΔlnE<2.5: Significant.
2.5<ΔlnE<5: Strong to very strong.
5<ΔlnE: Decisive.

SNLS (SNe)+WMAP3+SDSS(BAO):

Compared to Λ , $\Delta \ln E$ =-1.5 for constant w_X model $\Delta \ln E$ =-2.6 for $w_X(a) = w_0 + w_a(1-a)$ model Relative prob. of three models: 77%, 18%, 5% Liddle, Mukherjee, Parkinson, & Wang (2006)