Geometrical constraints from galaxy clustering measurements based on Euclid spectroscopy

Will Percival (on behalf of the Euclid team) work by the Euclid Cosmology Working Group

Galaxy clustering gives cosmological standard ruler

BAO scale measurements $(\Delta \theta, \Delta z)$ linked to physical scale predicted by theory (Δd) :

Radial direction

Angular direction

 $(1+z)D_A\Delta\theta$

Can use full galaxy clustering signal rather than just BAO as standard ruler Requires accurate modeling of evolution of galaxy bias

Hu & Haiman 2003; PRD, 68, 3004 Blake & Glazebrook 2003; ApJ 594, 665 Seo & Eisenstein 2003; ApJ 598, 720

Euclid

Current large-scale galaxy clustering measurements

Predicted galaxy clustering measurements by Euclid

Making predictions for Euclid

Fisher matrix allows us to translate between

- expected errors on power spectrum (easily estimated)
- errors on cosmological parameters (showing how good Euclid will be)

$$F_{ij} \equiv \left\langle \frac{\partial^2 \mathcal{L}}{\partial \theta_i \partial \theta_j} \right\rangle$$

Sir Ronald Aylmer Fisher (1890-1962)

For a galaxy survey we have that

$$F_{ij} = \frac{1}{2} \int \frac{d^3k}{(2\pi)^3} \left(\frac{\partial \ln P}{\partial \theta_i}\right) \left(\frac{\partial \ln P}{\partial \theta_j}\right) V_{\text{eff}}(\mathbf{k})$$
$$V_{\text{eff}}(k) \equiv \int \left[\frac{\bar{n}(\mathbf{r})P(k)}{1+\bar{n}(\mathbf{r})P(k)}\right]^2 d^3r$$

Tegmark (1997; PRL, 79, 3806)

DETF Figure-of-merit is area of 1σ confidence region for 2-parameter DE model, with equation of state:

$$w(z) = w_0 + (1-a)w_a$$

= $w_p + w_a(a_p - a)$

For publically available code, see Seo & Eisenstein 2007; astro-ph/0701079

Euclid BAO & P(k) Figures of Merit

	SDSS-II	BOSS	Slitless	Slitless	DMD	DMD
	LRGs	BAO	BAO	P(k)	BAO	P(k)
N(galaxies)	1×10 ⁵	1.5×10 ⁶	6.1x10 ⁷		2.1x10 ⁸	
V _{eff} / h ⁻³ Gpc ³	0.26	2.4	19		50	
redshift	0 <z<0.5< th=""><th>0<z<0.7< th=""><th colspan="2">0.5<z<2.1< th=""><th colspan="2">0.0<z<2.1< th=""></z<2.1<></th></z<2.1<></th></z<0.7<></th></z<0.5<>	0 <z<0.7< th=""><th colspan="2">0.5<z<2.1< th=""><th colspan="2">0.0<z<2.1< th=""></z<2.1<></th></z<2.1<></th></z<0.7<>	0.5 <z<2.1< th=""><th colspan="2">0.0<z<2.1< th=""></z<2.1<></th></z<2.1<>		0.0 <z<2.1< th=""></z<2.1<>	
epsilon	1	1	0.5		0.35	
Sky area / deg²	8000	10000	20000		20000	
Redshift error	0.001	0.001	0.001		0.001	
FoM	negligible	0.2	11	43	49	79
FoM (+Planck)	negligible	8	136	314	467	511
FoM (+Planck+BOSS)			183			

Slitless baseline: 50% of galaxies with F>4×10⁻²⁶ erg cm⁻¹s⁻² DMD baseline: 35% of galaxies selected to H<22.0

Euclid compared with on-going surveys

Euclie

Euclid gives an order-of-magnitude improvement over constraints from ongoing surveys

Current BAO constraints vs other data

ACDM models with curvature

flat wCDM models

How does Euclid BAO compare?

ACDM models with curvature

flat wCDM models

The power of Euclid: Summary

- Map of the Universe 75 times larger than available currently
- Homogeneous sampling of galaxies
- Will provide tight dark energy constraints

 BAO constraints have very low levels of systematics
 P(k) constraints are tighter, but require bias modeling
- Get complementary constraints from redshift-space distortions (see talk by Guzzo later)
- Enhanced dark energy measurement precision with slit spectra (using DMD)