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  If linear density perturbation 
exceeds threshold density the 
region will collapse and form a 
cluster 

  Mass function sensitive to 
amplitude of perturbations  
(σ8 ) and mass contents of the 
Universe (Ωm ); but also other 
cosmological parameters (w) ! 
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  Count halos in N-body 
simulations 

  Measure “universal” mass 
function - density of cold 
dark matter halos of given 
mass 

Jenkins et al. 2001; also Sheth & Tormen 1999 for analytical function 
Warren et al. 2004, Tinker et al. 2008 

more low
mass clusters

more low 
redshift clusters
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  mass density 
  power law dependence on fluctuation amplitude 
  power law dependence on growth factor 
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  Survey sky coverage 
  Redshift bins 
  Volume element 
  Limiting mass of survey (redshift dependent) 
 Cosmology dependence driven by volume 

element and mass function 
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  concordance cosmology: 
Ωm= 0.3;  
σ8= 0.78; n=1, h=0.72; 
w=-1, ΔΩ = 4.000 deg2  
Mlim = 1.7×1014h-1M  

  Ωm = 0.4 
  σ8 = 0.85 
  w = - 0.8 
  w = - 0.7 
  w = -1+0.2(1-a) 

change in 
volume 

change in growth  
factor 
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  DGP number counts for σ8 = 0.75, 
n=1, Mlim=1.7×1014h-1M(from 
‘SPT’) 

  mock data assuming Poisson 
errors 

  mimic DE model 

significant difference between 
mimic DE and DGP: >1σ 
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 Weak lensing: e.g. peak statistics 
 Galaxy overdensities 
◦ maxBCG 
◦  Voronoi Tesselation 
◦ Matched filters 
◦  Counts in Cells 
◦  Percolation Algorithms (FoF) 
◦  smoothing kernels 
◦  surface brightness enhancements 
◦ … 

  Strong Lensing 
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  Brightest Cluster Galaxy (BCG) at centre of every cluster 
  tight color-magnitude relation of BCG  
◦  used to (pre-) select  

  Identifying ridgeline galaxies 
◦  use model for radial and color distribution 

  maximize the two models as a function of redshift: estimate 
of redshift of cluster 

  Iterative scheme: removal of most likely clusters and their 
satellites 

  Apply probability chain, which has been calibrated with mock 
observations 

  Successfully applied to SDSS sample (Rozo et al.) 
  Biggest problem: Completeness and Purity of Sample 
◦  projection effects along line of sight; misestimate of cluster 

members 
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  Mass – Richness relation 
◦  calibrated with statistical 

weak lensing measurements 
(for 130,000 groups) 
◦  Johnston et al. 2007 

  Good purity and 
completeness to about: 
M~1013.5 h-1M"

  however for SDSS only to: 
z ~ 0.3 

  depth of Y, J and H filters 
◦  should be able to find 

ridgeline galaxies out to 
z=1.3-2.0 
◦  how far out do we find 

robust red sequence ? 
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Johnston et al. 2007 
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EIS-maxBCG 

EIS-WL 
3,5,7-σ 
(Berge et al) 

eROSITA (Muehlegger, Boehringer, Hasinger) 
Planck 
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WL selection 

MODGRAV 

w=-0.9 

solid: ΛCDM in total: 
well over 750,000# 

eROSITA 



 Mean mass observable relation 
◦  scaling laws dependent on method – not entirely 

determined: redshift and mass dependence 
◦  different methods can be used for cross 

calibration 
  individual scatter in mass observable relation 
◦  how behave the tails 
  high redshift, low mass, high mass, etc. 

◦  degenerate with cosmology 
◦  can also be estimated by surveys  
  Rozo et al.: optical, x-ray and weak lensing find 0.45±0.20 
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  assign likelihood for observed mass for a true mass 
p(Mobs | M ) with a bias and a scatter included; allow to 
differ in redshift and mass bins 

  completely free form does not allow cosmology fit 
(Lima & Hu) 

  ln Mbias = A+n ln(1+z) 
◦  better form for particular selections possible 

  σln M
2 = A+Bz+Cz2+… 

◦  so far this is ad hoc  
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  Exploit shape of mass function to calibrate for 
bias and scatter in constant mass bins 

  Further use clustering of clusters (cross-
correlated to other probes ? Not used here! ) 

  Result: scatter in mass-observable relation is 
not the problem: Increases number of clusters, 
hence better statistics 

 Uncertainty in scatter is PROBLEM 
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Including Planck priors and 5 cluster  
nuissance parameters; prior on 
scatter: 25% 
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orange contours: 50% prior on scatter, 25% bias 
dashed contours: 25% prior on scatter, 25% bias 
blue contour: fixed scatter 
dark contour: fixed scatter and bias 

1,2 and 3 
scatter parameters 



 Relevant for SZ and x-ray surveys 
  In addition to cosmological parameters fit 

for cluster parameters T* ; ξ ; ε 
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 Here simple estimate: 15 background 
(DES) galaxies/sq. arcmin 

 Distribution: dn/dz = exp(-z/zc); zc=0.5 

Projected errors on 
single cluster 

Fractional errors on cluster mass 
after stacking in redshift bins  
Δz = 0.1 and ΔM = 1014M 

Dodelson &  
Weller: 
DES and SPT 
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NO SCATTER; NO Planck Prior, see also Cunha et al., Wechsler et al. 
But also vice versa: Improvement of FoM could be 50% from WL and x-ray 
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  EIS cluster counts complementary to primary 
science drivers 

  sensitive in particular to modified gravity 
  crucial to understand and control systematic, 

scatter and scaling 
◦  next step: simulations to understand selection and 

optimize method 
◦  lessons to be learned from surveys like DES 

  in particular complementary to other full sky 
cluster probes 

  ‘self-calibration together with Euclid 
Spectroscopic Survey ! 
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