# FUTURE GROUND-BASED SPECTROSCOPIC SURVEYS

Olivier Le Fèvre, Laboratoire d'Astrophysique de Marseille

Ground-based heritage
Existing and planned ground-based facilities
Is ground competitive with space?

## EUCLID-NIS has a groundbased heritage: MOS

- Multi-object spectroscopy is a mature technology on most major ground-based telescopes
- It allows a very high survey efficiency
  - At low redshifts z<1: multi-fiber</p>
  - At high redshifts z>1: multi-slit

#### The power of MOS

- Get spectra of many objects over a large field of view
- For cosmology:
  - Get redshifts AND spectral properties
  - 3D mapping of large scale structures



Existing redshift surveys relevant to DE 2DFGRS  $e_O$ . **SDSS** 0.15 2SLAQ Rate Function fg(z) O VVDS k/h Mpc<sup>-1</sup> 0.06 0.080.1 full 2dFGRS tendard, 0\_-0.25, 0\_-0.75 (flat) log<sub>10</sub> P(k)/h<sup>-3</sup> Mpc<sup>3</sup> 1+z- input P(k) input P(k) convolved  $\Omega_{m}h = 0.168$  $3 \left[ \Omega_b / \Omega_m = 0.17 \right]$ 

 $\sigma_{R}^{\text{gal}}=0.89$ 

BAO from Low-z SDSS Growth rate to z~1 from galaxy distribution in VVDS (VLT-VIMOS) Guzzo et al., 2008

#### On-going surveys

- SDSSIII Boss: 1 million z, z~o.6
- VIMOS-VIPERS: 100,000 z, z~0.8-1
- Wiggle-z

VIPERS: VLT-VIMOS 100,000 spectroscopic z ~450 h of VLT time



# Ground-based surveys: competitive with EUCLID-NIS Rey parameters:

- Sensitivity: tel. diameter, background, throughput
- Wavelength range redshift range
- Field of view
- Multiplex: number of simultaneous spectra
- Number of effective hours (integrating) available

## Planned facilities

## Existing facilities

| Telescope | Diameter /<br>Field | Wavelength / # objects |
|-----------|---------------------|------------------------|
| VLT-VIMOS | 8m /<br>o.o6deg²    | 0.37-1 μm<br>800       |
| VLT-      | 8m /                | 0.4-0.9 μm             |
| FLAMES    | o.2deg²             | 100                    |
| SDSS-3    | 2.5m /<br>2.5deg²   | 0.36-1 μm<br>1000      |
| Keck-     | 10m /               | 0.4-1 μm               |
| DEIMOS    | 0.03deg²            | 120                    |
| Magellan- | 6.5m/               | 0.37-1 μm              |
| IMACS     | 0.12deg²            | 1000                   |
| FMOS-     | 8m /                | 1-1.8 μm               |
| Subaru    | o.1 deg²            | 100                    |

| Telescope             | Diameter / Field             | Wavelength<br>/ # objects |
|-----------------------|------------------------------|---------------------------|
| VLT-VIMOS<br>upgrade  | 8m / o.o6deg²                | Gain x2 in efficiency     |
| VLT-new<br>FLAMES     | 8m / o.2deg²                 | 0.4-1.2 μm<br>500         |
| WFMOS-?<br>(Subaru ?) | 8m / 1.2deg²                 | 0.36-1 μm<br>3000         |
| BigBoss               | 4m / 5deg²                   | 0.34-1.13 μm<br>5000      |
| XMS                   | 3.6m/1deg <sup>2</sup>       | 0.4-0.92 μm<br>4000       |
| LBT                   | 8m/5deg²                     | 0.37-1 μm<br>5000         |
| JWST                  | 6.5m/o.oo25deg²              | 1-5 μm<br>100             |
| TMT                   | 30m / 0.03 deg²              | 0.37-1.6 μm<br>400        |
| EELT                  | 42m / 0.015 deg <sup>2</sup> | 0.37-1.6 μm<br>400        |

# Proposed ground-based survey instruments: best contenders

- WFMOS
  - On an 8m, 1.2deg², >3000 fibers, not funded
- XMS
  - On a 4m (CAHA), 1deg², >4000 slits, not funded
- Big Boss

Other being discussed/studied:

-5 deg<sup>2</sup> multi-slit spectrograph on LBT

- ?

### Big Boss, the instrument

4m telescope,

- KPNO for 5years
- then CTIO for 5y
- FOV: 5 deg<sup>2</sup>
- 5000 fibers
- 0.34-1.13 microns

# Big Boss, the proposed survey

- 24,000 deg<sup>2</sup>: 14,000 on the KPNO 4m, 10,000 on CTIO
- 10 years survey
  - 180 nights, 50% efficiency, 8h/night = 7200h total
  - Targets
  - LRGs 0.2<z<1
  - Star forming galaxies: [OII]3727Å, 0.7<z<2</p>
    - Efficiency of pre-selection TBD
  - QSOs: 2<z<3.5</li>
- Input imaging: Griz Pan-Starrs, u CFHT
- 45 million galaxies, 1 million QSOs

# Big Boss, realistic performances vs. ENIS

- Critical review of assumptions on BigBoss
- Vary key parameters from pessimistic to optimistic (spreadsheet)

| Parameter                                                      | Big Boss                                            | ENIS slitless       | ENIS DMD                        |
|----------------------------------------------------------------|-----------------------------------------------------|---------------------|---------------------------------|
| Total field                                                    | 13,000 to 16,000                                    | 20,000              | 20,000                          |
| Duration                                                       | 10 <b>y</b>                                         | <b>5</b> Y          | <b>5</b> Y                      |
| Redshift range<br>(galaxies)                                   | 0.7-2 ([OII])                                       | 0.5-2 (Ηα)          | o.5-2 (Hα)<br>Up to z~4 ([OII]) |
| Depth erg.s <sup>-1</sup> .cm <sup>-2</sup> (7 σ, 1.6 microns) | 2.5X10 <sup>-17</sup>                               | 4×10 <sup>-16</sup> | 1×10 <sup>-18</sup>             |
| Resolution                                                     | 2000                                                | 500                 | 200-400                         |
| Number of galaxies                                             | 15 million (pessimistic)<br>45 million (optimistic) | 70 million          | 200 million                     |

#### Conclusion

- Main limitation from ground: sky background
- Ground based spectroscopic surveys will not reach the performances of space, even after 10 years
  - They will be an intermediate step towards the best space experiments
  - Should not oppose ground and space experiments, both are needed
- ENIS = 3 to 10x more galaxy redshifts than best ground experiments, with larger redshift coverage
- DMD spectroscopy offers the best « safety margin »