EUCLID Mission Assessment Study

Observing the Dark Universe with EUCLID

O. Wallner, K. Ergenzinger, L. Brouard

18 November 2009 ESTEC, Noordwijk

EADS

All the space you need

Outline

- Introduction
- Driving requirements
- Major system trades
- Mission reference design
 - Instruments
 - Payload
 - Spacecraft
- System performance
- Programmatics
- Conclusions

Introduction

EUCLID Mission Assessment Study

- Industrial part of the Assessment Phase (2008 2009)
- Phase 0: mission definition, system concepts

Study objectives

- Define mission at system level
- Demonstrate technical feasibility
- Demonstrate programmatic feasibility
- Analysis of entire space segment

Top-Level Requirements

All the space you need

Driving Requirements

Requirement		Major system impact			
Instruments	VIS, NIP, NIS	Payload interfaces $\rightarrow AIT$			
Mission lifetime	4.5 years	Observation strategy → Thermal design AOCS design → Duty cycle			
Ellipticity stability	σ _e < 0.02% rms over 3 days	Thermal stability (~30 mK) → Thermal design → Observation strategy			
Pointing stability	APE < 25 mas rms (dither steps)	AOCS design → Payload star tracker Thermal design			
Data volume	850 Gbit/day	Communication system → On-board compression → Data rate			
PSF size (VIS)	0.18"≤FWHM ≤0.23" 83.6% within 3×FWHM	Increase PSF \rightarrow AOCS, mechanism, optics			

Major System Trades

- Observation mode
- Dithering
- Instrument interfaces

EUCLID Design alternatives **PLM Design Options** (varying baselines) Phase 1 & Phase 2 assessed during the study **Continuous Scanning** Step & Stare **Feasibility Analysis** No Dithering **Payload Dithering** Spacecraft Dithering 2 3 Preliminary Design Feasibility Analysis IDECS Individual Interfaces Afocal Pupil Interfaces 5 End-to-End Design Preliminary Design ESA Optical Design

6

Catadioptrics

End-to-End Design

- Observation strategy: basic vs. modified
- VIS/NIP separation: spatial vs. spectral
- Payload temperature: cold vs. warm
- Spectroscopy: multi-object vs. slitless

Orbit & Transfer

Operational orbit

- SEL2 (0.01 AU=1.5×10⁶ km from Earth)
- Free-insertion large-amplitude orbit
- No eclipses
- SSE angle \leq 30 deg
- Daily visibility \geq 4 h/day
- Orbit maintenance: every 30 days, guarantees non-escape orbits
- $\Delta V \sim 20$ m/s for station keeping (every month)

Launch & transfer scenario

- Soyuz ST 2-1B from Kourou
- Direct injection into transfer orbit
- 3 correction manoeuvres: $\Delta V \sim 34 \text{ m/s}$
- Transfer time: 30 days
- Transfer orbit inclination: 5.3 deg
- Total mass capacity: 2160 kg
- Fairing dynamic envelope: Ø 3.2 m

Sky Observation

• Step & stare observation mode

Nominal mode

• Sunshield always \perp to Sun direction (SAA = 0)

Equinox mode

- Spacecraft tilted away from Sun during Equinoxes
- Observation along small circles
- Observation along great circles

wide survey: 20.000 deg²

Sky Observation

Sky observation simulation

- Nominal mode (44740 fields)
- Equinox mode (5141 fields)
- Deep survey (90 fields, 29 revisits)
- SAA determined by missing area

Mission duration determined by

- Integration time
- Duty cycle
- FoV

Total time		Maximum		
per field [s]	FoV [deg ²]	4 years	5 years	
2200	0.5 × 1	42.5	14.5	CD
2734	0.478 × 1.031	_	41.5	
2734	0.535 × 1.085	48.5	25.0	

Instrument Definition

Payload module

- Telescope and payload bench
- VIS instrument
- NIP instrument
- NIS instrument

Instrument Interfaces

Interfaces

- Driven by procurement approach and AIT requirements
- VIS interface: focal plane
- NIP interface: filter wheel
- NIS interface: GRISM

focal pupil Telescope Telescope VIS/NIP Folding M3 Dichroic mirror (VIS/NIP) mirror 1-2 um trans. 550-920 nm refl. VIS/NIP Calibration FWHM Shutter sources mech. incl. optics Telescope Field Cassegrain focus Telescope M2 VIS/NIP off-axis angle = +0.72° separation M1 NIS off-axis angle = -0.70° incl. mech mirrors D=1.2 m D=0.37 m Correction Telescope Folding M3 lenses mirror (NIS) (NIS) CaF2, S-FTM16 afocal pupil All the space you need

Payload Design – Principles

Interfaces

- Independent instruments: fully qualified before integration
- Clear optical interfaces: validated during telescope alignment, telescope simulator for each instrument
- Simple electrical interfaces: interface module for each instrument

Configuration

- Minimum payload volume: minimizes mass, high stiffness and stability
- Payload radiators: view to cold space, minimum view factor between each other

Material

- Homothetic design analog to GAIA payload: Silicon Carbide (SiC) in particular for telescope and payload structure
- Optimum in terms of mass, stiffness, thermal stability
- Compatible with other materials for instruments (especially for NIR instruments)

Thermal

- Low payload temperature (150K) allows higher thermal stability
- Passive cooling

Payload Module – Overall Design

- overall mass: 783 kg (incl. 20% margin)
- overall dimensions: 2640 mm × 2420 mm width, 3300 mm height
- each instrument on separate bench (3 bipods as interface)

Spacecraft Design

Configuration

- Payload atop service module (SVM)
- Sunshield directly interfaces the SVM
- Thermal cover for payload

Sunshield

- Canted design for high stiffness and optimum shading
- 8.9 m² solar arrays, mounted onto the sunshield
- Size of 4670 mm in height and 2990 mm in width

Service Module Design

Configuration

- Size driven by tank accommodation
- Units mounted on shear walls
- Size of 3100 mm in diameter and 1100 mm in height

SVM structure

- Hexagonal shape, Al honeycomb with CFRP facets
- Central cone (1194mm) interfaces the launch adapter

All the space you need

Spacecraft Design

(subsystem margin included)	Mass incl. margin [kg]		
Service Module	676		
Telescope, bench, common elements	510		
VIS Instrument	75		
NIP Instrument	81		
NIS Instrument	117		
Payload Module	783		
Nominal dry mass	1458		
Nominal dry mass incl. 20% margin	1750		
CPS propellant	65		
MPS propellant	62		
Launch vehicle adapter	110		
Launch mass	1987		
Launch vehicle capacity	2160		
Launch margin	+8%		

System Performance – AOCS

Requirements

- RPE < 25 mas RMS over 375 s
- APE < 10 as RMS for field steps
- APE < 25 mas RMS for dither steps

- Chemical propulsion: orbit maintenance and attitude control
- Cold gas micro-propulsion: field steps and dither steps
 - 0.5 mN thrusters developed for GAIA
 - Higher thrust δ-development feasible

Telescope Star

System Performance – AOCS

Fine Guidance Sensor integrated into VIS focal plane

- Bandwidth: 0.5 Hz 1 Hz
- Performance: sensor noise not performance-limiting

Control loop design for science mode AOCS

- Bandwidth: ~0.1 Hz ... set by low thrust of cold gas system
- Relies on sensor fusion of FGS and IMU
- IMU (Astrix-200, 10 Hz bandwidth) propagates attitude to achieve higher attitude rate
- Pointing requirement (APE < 25 mas) can be safely fulfilled

System Performance – Radiometry

Integration times per frame

- VIS: 568 s
- NIP: 466 s (2 intermediate read-outs)
- NIS: 531 s

Dither manoeuvre

- 43 s slew time
- 14 s settling time

Step manoeuvre

- 217 s slew time
- 10 s settling time

Total

- Frame: 641 s
- Field: 2734 s
- Duty cycle per field: 83%

Instr.	SNR Requ.	Band	FWHM [arcsec]	Integrat per fra	ion time .me [s]
VIS	10	R+I+Z 550–920 nm	0.40	568	568
NIP	5	Y 920–1146 nm	0.29	160	
		J 1146–1372 nm	0.30	209	
		Hp 1372–2000 nm	0.30	97	466
VIS	5	1000 nm	0.99	531	
		2000 nm	1.00	446	531

Integration times longer than estimated by ESA due to different assumptions for instrument transmission

System Performance – Mission Duty Cycle

	Scientific mission time	4.5	yr
	FoV	0,492812	deg ²
	Integration time per frame	568	s
	Shutter closing and opening	0	S
	Detector readout	0	S
10	SC dither slew	43	S
ions	SC dither settling	14	S
erat	SC step slew	217	S
/Op	SC step settling	10	S
vres	Antenna repointing	0	S
oeu	Orbit maintenance	43200	s
Mano	Equinox mode slew manoeuvre	168	S
	SC north-south flip manoeuvre	236	S
	Deep survey slew manoeuvre	168	S
	Thermal stabilisation	432000	S
ion	Dark field exposure	600	S
Calibrat	Flat field exposure	600	S
	Known field exposure	600	S
	Total number of fields	46505	S
	Total observation time	105659873	S
	Total non-observation time	31572041	S
	Duty cycle over mission	77,0	%

$0.478 \times 1.031 \ deg^2$

during SC manoeuvre during SC manoeuvre 70 arcsec dither step 0.5 Hz FGS readout 0.5 deg step 0.5 Hz FGS readout during SC manoeuvre 12 h per month, CDF 90° bang-bang, 10 N 180° bang-bang, 10 N 90° bang-bang, 10 N 120 h for 45° slew worst case daily daily monthly including overlaps wide survey Sum of above contributions

All the space you need

System Performance – Ellipticity

Requirement

• Ellipticity variation over FoV $\leq 20\%$

Analysis

- Statistical analysis (Monte-Carlo)
- Margin, e.g. for CCD trapping effects

Ellipticity Contributor	Ellipticity [%]
Optical distortion	2.0
Wavefront error (60 nm RMS)	7.6
Inhomogeneous detector MTF	5.0
Line of sight stability	0.0
Effect of FWHM increase mechanism	5.0
Total (RSS)	10.6

System Performance – Ellipticity Stability

Requirement

• Ellipticity stability over 3 days $\leq 0.02\%$

Thermal analysis

- Thermal model of spacecraft
- M1-M2 stability drives the ellipticity stability
- Thermal stability of ~30 mK required
- Most critical are changes in the thermal environment
 - → sudden change of SAA in Equinox mode

This

System Performance – Observation Strategy

not be

shall

ŝ

proper

This

Programmatics – Technology Readiness

All the space you need

Programmatics – Major Risks & Critical Issues

Assembly, integration and testing (AIT)

- Clear interfaces required between instruments and payload module
- Final performance can only be verified at payload/spacecraft level (ellipticity)
- Instruments have to be fully qualified before integration into payload module

Radiation persistent CCDs

• Radiation effects cause charge traps \rightarrow noise on PSF shape (FWHM, ellipticity)

Cryogenic dioptric (lens) systems

- Optical performance verification required in ambient and cryogenic conditions
- Lens mounts compatible with the environment

Cryogenic mechanisms

- Filter wheel, grism wheel, FWHM mechanism, M2 mechanism, shutter
- ~190.000 operations over mission lifetime for wheels
- Positioning accuracy, repeatability

IR detector availability

- Hawaii 2RG and Sidecar (Teledyne)
- ITAR restricted, no European alternative today

Programmatics – Schedule

• Schedule with launch in 2018 is demanding: spacecraft delivery not before end of 2017

Long-lead items

- Telescope
 - Mirror polishing is driving the schedule
 - Development schedule critical but compatible with M-class schedule
- Focal plane and proximity electronics
 - Detectors, proximity electronics, interface module
 - Instrument activities to be started as early as possible

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
	Assessment Phase		Definition Phase		Implementation Phase						
Assessment Phase CDF Study ITT Industrial Phase 0 Mission Downselection	•										
Definition Phase ITT Industrial Phase A/B1 Mission Downselection			•]						
Implementation Phase ITT Industrial Phase B2/C/D					•						

Summary & Conclusions

Summary

- Mission has been basically defined
- Major system concepts have been established
- Potential risks have been identified

Conclusion: EUCLID is feasible

- Preliminary concepts for mission, spacecraft, payload and instruments derived
- Key mission requirements can be fulfilled
- Risks are manageable
- No show stoppers have been identified

Conclusion: EUCLID is compatible with the Cosmic Vision M-class constraints

- Technology Readiness
- Planning
- Costing

Conclusion: reconsideration of some requirements reasonable to simplify mission

- Mission lifetime versus SNR definitions & FoV
- APE definition as AOCS driver

