Mission and Spacecraft Design Concepts for the Euclid Satellite

<u>A. Anselmi</u>⁽¹⁾, G. Sechi⁽¹⁾, C. Ruilier⁽²⁾, O. Simane⁽²⁾, S. Barrère⁽²⁾, A. Reutlinger⁽³⁾, C. Gal⁽³⁾, M. Sánchez Nogales⁽⁴⁾, F. Cacciatore⁽⁴⁾

⁽¹⁾ Thales Alenia Space Italia, Torino, Italy ⁽²⁾ Thales Alenia Space France, Cannes, France ⁽³⁾ Kayser-Threde GmbH, Munich, Germany ⁽⁴⁾ DEIMOS Space S.L., Madrid, Spain

> Conference **Observing the Dark Universe with Euclid** November 17-18, Noordwijk, The Netherlands

- 1. Design drivers
- 2. Configuration rationale
- 3. Main trade-offs
- 4. PLM design
- 5. Instrument design
- 6. Survey strategy

Multiple DE probes

➔ One telescope feeding 3 instruments

Survey speed

→ Large Field of View (0.5 deg²) / Optimised sky survey strategy / Fast attitude slews

Survey depth and signal to noise ratios

Well baffled design / Cold telescope for low background / On board data processing for noise limitation / Cryo optics and detectors

Size reconstruction and stability of the Point Spread Function

- → High image quality / Large data rates / Payload in the AOCS loop
- Permanently shaded, temperature-controlled telescope (thermoelastic stability)

M-mission cost ceiling and target launch date

→ Passive cooling (→ L2) / Telescope aperture limited to 1.2 m / Limited number of NIR detectors / Any new technology demonstrated by test by 2011.

Satellite configuration rationale

Sunshield

Stable, controlled thermal environment with little variation between hot and cold cases

Baffle

- Straylight suppression (pending future analysis)
- Contamination protection (baffle cover, not shown in drawings)

Pre-integrated instruments

Parallel developments to relax schedule constraints

PLM mechanical-thermal concept

- Double truss for low deformation, ease of AIT
- Separate, controlled thermal environments

Herschel-like SVM

- Design and development heritage
- Wide room for warm payload electronics

System configuration

Design trade-offs overview

Experiment policy trades (ESA)

- Step-and-stare vs. continuous scan
- Instrument-level vs. <u>satellite-level dithering</u>
- Multi-slit vs. <u>slitless spectroscopy</u>

Telescope accommodation trades

- Straylight & stray heat protection: <u>Baffle-and-sunshield</u> solution preferred
- Low vs. ambient telescope temperature: 240 K, driven by NIR background

Experiment accommodation trades

- Highly modular accommodation: each instrument can be specified, developed, tested and integrated as a self standing unit.
- <u>Decentralized</u> instrument data handing architecture: instrument-own ICU (control and drive) / DPU (data processing and compression)

Attitude measurement and control trades

- <u>Fine Guidance Sensor</u> co-located with VIS focal plane and sharing VIS optics
- GAIA type micro thrusters vs. <u>magnetic-bearing reaction wheels</u> : driven by mass budget

PLM Design

Materials selection

- Mirrors
 - M1 specification
 - ➢ Residual WFE (PTF)(1g-0g ⊕ polishing ⊕ 300K- op T^{ure}) <20nm RMS</p>
 - ➢ Focus stab :R= 4.6m ; ∆R<10µm (2390s)</p>

→Mirrors thermal stability needs

	300 K			170K		
		thermal stability	Tgradient	thermal stability	Tgradient	
	CTE	(K/40')	stab (K/40'	(K/40')	stab (K/40'	
zerodur	<2 E-8	109	4,2	18	0,71	
sic	2,20E-06	1	0,04	2	0,1	

→ Performances already demonstrated on Zerodur equivalent mirror

M1-M2 structure thermal stability needs 3 µm

	300K			170 K			200 K
	CFRP	Sic	Si3N3	CFRP	Sic	Si3N4	Si3N4
CTE µm/m°C	0,6	2,2	1	0,5	0,9	0,1	0,3
temperature stability need							
M1-M2 structure °C	2,7	0,9	2	3,3	1,8	16	6

Over a large temperature range (ambient to 170 K), Zerodur mirrors and Si3N4 structural parts provide the highest M1M2 stability, and the most affordable demand on thermal control.

Optical design

The optical design was received from ESA and adapted by the TAS team to improve its accommodability

Rationale

- improve accommodation of elements
- reduce volume (height) and mass of payload and S/C structure
- facilitate assembly and integration of instruments (avoid oblique mechanical I/F)

Solutions

- increased distance between M1 and NIS folding mirror (accommodation issue);
- VIS and NIP put on the same XY plane to reduce satellite height (volume, mass issue);
- all FPAs placed on the same side to make thermal design feasible (thermal design aspects);
- NIS rotated in the XY plane by 90° to remove conflict with VIS/NIP components and rays;
- dichroic tilted to improve VIS accommodation.

The new design is completely compliant with the requirements

All rights reserved, 2009, Thales Alenia Space

NIP / NIS Units Implementation

Instrument Electrical Architecture

Large on board data processing load
Independent instruments from different consortia
Individual development and test requirements
Decentralized architecture

NIP electrical block diagram

Lyot Stop and Instrument Temperature [K]

All rights reserved, 2009, Thales Alenia Space

Observation procedure

Dithering by s/c, 4 dithers, 3 NIP bands

- Filter wheel turn does not disturb observations → requirement
- Shutter operation incompatible with continued observations
- 4 x 500 s + short (100s) NIS imaging phase

Total cycle of about 2400s

■ 36 x 0.48 deg² fields/day

Sky survey strategy

Ζ

Basic Strategy

- Scan strip by rotating S/C about X-axis (nominally the sun line)
- After the S/C has moved 1° on its orbit around the Sun, rotate S/C about its Zaxis to restore SAA, and start new strip
- Strips lie on great circles perpendicular to the S/C-Sun direction; movement of the S/C around the Sun changes the longitude of the great circle scanned

Modified strategy

- Flexible time: time when basic strategy would produce redundant observations (ecliptic poles & equinoxes)
- In flexible time, use 30-deg SAA d.o.f. to cover blank spots
- Strategy succeeds to cover extragalactic caps in 4 yr
- However, longer field dwell time has reduced pass redundancy at high ecliptic latitudes (important for Deep Survey)

		Ecliptic Longitude				
Flexi Time		Year 1	Year 2	Year 3	Year 4	
Spring	Start	84°	73°	55°	40°	
	End	96°	107º	125°	140°	
Autumn	Start	-96°	-107°	-125°	-140°	
	End	-84º	-73°	-55°	-40°	

All rights reserved, 2009, Thales Alenia Space