

E-NIS Instrument Description

Filippo Maria Zerbi On behalf of the ENIS Team

	Slitless Baseline	DMD Option		
Accuracy in redshift	$\sigma_{\!\scriptscriptstyle \Delta \! r} {}^{\leq 0}$.	.001(1+Z)		
Survey Area	> 20,0	000 deg ²		
Statistics and Depth	(4-6)x10 ⁷ #galaxies @H<19.5 (AB) ¹	1.5x10 ⁸ #galaxies @H<22.0 (AB)		

Wavelength Range	1.0-2.0 microns	0.9-1.7 um (baseline) 0.8-1.8 um (goal)		
Spectral Resolution	500 (constant. Res.element 2 pixels)	400 (min 300 max 600 across the wavelength range, Variation over FoV < 5-10 %)		
Pre-imaging	 Required for: Associate the emmission lines in the dispersed image with a counterpart in teh field Provide position of teh objects Provide zero-point in the wavelength scale Remove ambiguitieswith zero order spectra contamination Give object size and orientation. 	Required for: • On-Board Target Selection.		
PSF	Better than 80% EE in 1 arcsec (Imaging mode), better that 80% EE in one detector pixel (spectroscopic mode)			
Level of Straylight in the FoV	<20% Zodiacal Light at ecliptic poles	<10% Zodiacal Light at ecliptic poles		

E-NIS has carried out at System and Subsystem level 2 parallel studies

Baseline -Slitless Spectrograph -R=500 between 1.0 and 2.0 um -FoV 0.5x1.0 sqdeg -8 detector chips -Dispersion obtained via Grism -Counter-dispersion for Imaging -Extraction based on Roll Angles (or Multiple Filters) -Limited pre-processing on board (cosmic-ray hits flagging)

DMD Option

- -Multi-slit Spectrograph
- -4 arms (2 arms under study)
- -8 detector chips
- -R=200-400
- -Wl Range 0.9-1.7 um
- -FoV 0.43 sqdeg (4x 0.23x0.5)
- -Dispersion obtained via Grism
- -Pre-Imaging mode available
- -Pre-processing on-board (T.S.)-Downlink limited to processed data

Environment

Volume Allocation	Cylinder of 2100 mm diameter and 1100 mm height				
Mass Allocation	125 Kg (110 Kg +15 KgHarness)				
Power Allocation	110 W (electrical Power)				
Cooling Power	90 W				
Data-Rate allocation	120 Gbit/day				

Table 5-1 Allocated Budgte Assumption for E-NIS

Telescope and reference design

Korsch with a focal exit pupil, primary diameter 1.2 meter, with a central obscuration 0.37 m. with afocal pupil for NIS.

Reference "basic" slitless design "associated" with the Telescope

Sharing the room (an not only the room) with our Imaging cousins

Sharing the Ship

Euclid dithers at spacecraft level in a pattern (0,0 ;+40,+100 ; +40, +200 ; +40, +300 arcesconds)

Alternate Exposure and "auxilliary"time in a cycle of approx. 550 sec.

Figure 4.20: Euclid observation sequence.

Parallel Slitless-Baseline and DMD-Option Studies: **DMD Option has** relevant differences (reflected in the performances).

We have nonetheless tried to maximize similarities in terms of:

- Volumes/Interfaces
- Location of important subsystems
- Thermal Architecture
- Focal Plane architecture
- Components, Motors, Materials, etc.

This in order to:

- Not duplicate the study of similar subsystem (same LEGO brick, different construction).
- Allow "swapping" baseline with option at and advanced state.

SLITLESS BASELINE

Baseline Slitless Optical Design

With respect to ESA design:

- Camera with shorter physical length (same focal).
- Larger back Focal Distance to accommodate filters
- Folding

Science likes dispersers with constant resolution in the Wl Range. -- Grisms and Prisms provide variable Resolution.

Silica - ZnSe – Silica – Grating

Wavelength	1.0	1.2	1.4	1.6	1.8	2.0	notes	
M1	98%	98%	98%	98%	98%	98%	(protected Silver)	
M2	98%	98%	98%	98%	98%	98%	(protected Silver)	
POM	98%	98%	98%	98%	98%	98%	(prot. Ag, or Au)	
CL 1+2	98%	98%	98%	98%	98%	98%	(0.5% AR coating)	
M3	98%	98%	98%	98%	98%	98%	(Au)	
 Fold. mirror	96%	96%	96%	96%	96%	96%	(double pass Au)	_
Grism(min)	15%	55%	75%	75%	65%	20%	(NICMOS)	
 Camera	96%	96%	96%	96%	96%	96%	(0.5% AR coating)	
S-FTM16	99%	99%	98%	97%	94%	92%	(internal transm. 60 mm thick.)	
FPA DQE	90%	90%	90%	90%	90%	90%	(from revised measurements)	
Filters	92%	96%	96%	96%	96%	92%	(assumed for typical filters)	
Overall	11%	41%	55%	54%	46%	14%		
	T	able 7-	1 - EUC	ID NIS	efficie	nev hu	daet	

"minimal" figure obtained with very conservative assumptions about the grating efficiency

Theoretical computation checked against existing "similar" device used for nominal figure

Wavelength	1.0	1.2	1.4	1.6	1.8	2.0	notes
Grism(nom.)	60%	86%	85%	80%	72%	60%	(VIMOS, GAIA)
Table 7-2- EUCLID NIS nominal grism efficiency							

Mechanical Concept

Main structure in CFRP-Al honeycomb sandwich panels

Perimetral frame, glued basis, screwed top

MIRI Imager filter wheel: "template" for functions (2; conservative)

Bipods mounting of a light-weighted SiC Mirror

CFRP – Titanium Bipods connection to the spacecraft

FEA Model

• Bipods modeled with beam elements, 8 elements for each truss.

First eigenfrequency 87 Hz, second 110 Hz, third 114 Hz.... High enough.

╬╴

Enis

Thermal Architecture

Detectors need to be operated at 100 K with a stability of 10 mK over 500 s.

ESA-ESTEC – November 18, 2009

╡┝═

ENIS

Electronic Architecture

Focal Plane Architecture

Cosmic Ray Deglitching Strategy

DMD OPTION

The DMDs

DMD Optical Design

Mechanical Implementation

Thermal Architecture

Same Interfaces with the Spacecraft, Same Radiators.Different harness and distribution (at Payload levele)

Electronics Architecture

To SVM

Mass MEMOR

to CDMU

OBT SYNCH

PRIMARY VOLTAGE

Ν

SpW Router

R

SpW Router

 \square

FPAs Architecture

A slitless spectrograph tailored to the top level requirements within the budget assumptions for the study is technically feasible.

> A DMD spectrograph tailored to the top level requirements within the budget margins assumptions for the study is technically feasible EXCEPT the DMD subsystem itself currently under qualification.

> > THANKS !