EIC Simulations

Thomas Kitching

A. Amara, S. Bridle, O. Boulade, B. Dobke,
A. Fontana, A. Grazian, A. Heavens,
A. Kiessling, M. Meneghetti, S. Paulin-Henriksson,
J. Rhodes, A. Refregier, A. Taylor, R. Teyssier, L. Voigt EIC Weak Lensing & Simulation Working Groups

EIC Simulations

- Simulating aspects of
 - Hardware
 - Software
 - Image Reconstruction
- Weak Lensing
- Linking
 - Science Requirements to Mission and Survey Design
- EIC Simulations and Weak Lensing Groups

Thomas Kitching, EIC Weak Lensing & Simulation Working Groups

N Body Simulations

- Need Cosmological N-body Simulations
- Including full ray tracing through dark matter
- Multi-scale Multi-resolution approach

- For the mission
 - Needed for covariances and theoretical predictions

So far

Need to create realistic mock surveys

N-body Simulations

- R. Teyssier (2007)
- Largest N-body simulation to date

N-body Simulations

- Smaller scale higher resolution (A Kiessling, A. Heavens, A. Taylor)
- Evolution as a function of redshift
- 20 sq deg z=0.1-1.5 Recover I=100 10,000

N-body Simulations

- O. Hahn et al.
- Full hydrodynamic
 - Baryonic effects
 - Ram pressure striping
- Disk intrinsic Alignments
 - Depend on orientations
- Advancing understanding of intrinsic alignments
 - N-body
 - Halo Model (M. Schnieder & Bridle)
 - Nulling (Joachimi & P. Schnieder)

Thomas Kitching, EIC Weak Lensing & Simulation Working Groups

Sky Maps

- Two independent pipelines
 - skylens : M. Meneghetti
 - simage : J. Rhodes, R. Massey
 - Convergence tested and confirmed
- Aim of producing mock Euclid images
- Use 10,000 HUDF galaxies in B,V,i,z,J,H decompose into shapelets
- Telescope diameter, field of view, CCD gain, readout noise, pixel scale, QE
- (constant) shear added to simulations

Sky Maps

- 33''x22'' ~ (1/3x10⁹)th of Euclid
- 1800s
- 22.3 M/"2

Thomas Kitching, EIC Weak Lensing & Simulation Working Groups

Sky Maps

Using 3 independent shape measurement techniques

- Also made a SourceExtractor S/N detection
- Iensfit : T. Kitching, L. Miller
- im2shape : S. Bridle, L. Voigt

Thomas Kitching, EIC Weak Lensing & Simulation Working Groups

Thomas Kitching, EIC Weak Lensing & Simulation Working Groups

Exposure Time Calculator

- Andrea Grazian & Adriano Fontana
- Based upon LBT exposure time calculator
 - Grazian et al. (2004)
- http://lbc-oa.roma.inaf.it/cgi-bin/calcuateETCDUNE.pl
- Allows user to specify a flexible combination of
 - S/N, magnitude limit and exposure time
- Can also change several instrument parameters
 - e.g. on-the-fly filters of arbitrary bandwidth and efficiency

ETC

Output

- Simulated image of object
- Parameters e.g. flux,
 S/N, PSF size
- Instrument development
- Link to Science requirements (area, mag nitude, size) to survey optimisation

Thomas Kitching, EIC Weak Lensing & Simulation Working Groups

PSF Simulator

- S. Paulin-Henriksson et al.
- Links the system PSF to the science requirements
- Simulate stars and galaxies, measures shears
- Comparison made between the measured shear variance and requirement of $\sigma_{\rm sys} \leq 10^{-7}$ (Amara & Refregier, 07)

PSF Simulator

- PSF components
 - Optical PSF, includes diffraction effects
 - AOCS contribution, due to movement during exposure
 - Detector PSF e.g. due to diffusion (adopt a Gaussian)

PSF Simulator

Example : Pixel scale / PSF FWHM optimisation

Conclusion

- Cosmological to System-Level simulations
 - Links Science Requirements to Hardware & Survey Design

- N-body multi-scale multi-resolution approach
- Sky Maps realistic Euclid performance; n_{eff} req. met
- Exposure-Time Calculator flexible & multi-purpose
- PSF Simulator throughput from harware to science

End