OMEGA dataset

- 2 "cubes" (.QUB & .NAV)

-1 software (readomega.pro under IDL)

OMEGA DATA CUBE ORBNNNN_M.QUB

OMEGA GEOMETRY CUBE (ORBNNNN_M.NAV)

Figure 3 : Conceptual view of the geometry qube

Bands 0-20: SWIR-C (All angles in units of 0.0001°)

- 2: incidence wrt reference ellipsoid
- **3: emergence wrt reference ellipsoid**
- 4: incidence wrt center of Mars
- 5: emergence wrt center of Mars
- 6: longitude of the pixel center
- 7: latitude of the pixel center
- 8: incidence wrt the local normal (MOLA)
- 9: emergence wrt the local normal
- 10: phase wrt the local normal
- 11: slant distance (meters)
- 12: MOLA elevation (meters)
- 13-16: longitude of the 4 corners
- 17-20: latitude of the 4 corners

Bands 21-35: same as 16-20 for SWIR-L Bands 36-50: same as 16-20 for VIS

First cut at positioning. Can be off by

THE OMEGA REDUCTION SOFTWARE (IDL)

- provided as a ZIP file in the SOFTWARE directory (present revision: SOFT05.ZIP)
- unzipping the latest ZIP file creates a subdirectory SOFTNN
- all files from the SOFTNN subdirectory must be copied to the working directory A users' guide and information on updates is provided in SOFTNN_readme.txt
- omega_path must be edited so as to point to the proper directories for the QUB and NAV files respectively (which can be the same) the path must end with a \ for windows, with a / for linux
- a QUB file and its NAV file can then be read by typing: IDL (CR)
 IDL> .run readomega (CR)
 OMEGA observation: ORBNNNN_M (CR) (name without the extension)
- readomega compiles required procedures, then creates the following arrays
 - idat: raw datasdat0: dark current and offsetjdat: radiancesdat1: housekeeping infospecmars: solar spectrum (→ I/F)wvl: table of wavelengthsgeocube: geometry informationmtf: photometric functionexposure: 3 values (C, L, Vis)summation: co-added successive scans
- detailed information on the content of these arrays is provided in the EAICD (/doc repertory in PSA)

OMEGA DATA SET AND ARCHIVE

- Access through the Planetary Science Archive at ESAC with a mirror in the PDS data base
- increasing numbers of bad pixels with time

The data and tools available to the « wide science community » are those available to Col's during the proprietary period

• Basic policy :

- no « final truth » calibrated data set (level 2)
- level 1B is the prime data set, with associated geometry cubes (for each pixel: longitude, latitude, incidence, emergence, phase, distance, MOLA altitude)
- reduction software to level 2 is provided (IDL)

Main derived variables of interest (see EAICD for details)

Radiance factor:jdat(*,k,*)/specmars(k) for k=0,351Cos(incidence):cos(geocube(*,2,*)*1.e^{-4*}!dtor)Reflectance factor:Radiance factor / cos(incidence)Distance S/C to pixel center :geocube(*,10,*)*1.e^{-4}MOLA altitude:geocube(*,11,*)*1.e^{-4}MOLA local incidence:cos(geocube(*,8,*)*1.e^{-4*}!dtor)

Center longitude:geocube(*,6,*) * 1.e⁻⁴(C channel)Center latitude:geocube(*,7,*) * 1.e⁻⁴(C channel)

Relative positionning is very good for 16, 32 and 64 pixel modes. A small correction is needed for 128 pixel modes, it will be Included in a future release

Absolute positioning can be off by several km (1 sec along track: 4 km at pericenter)

Repositioning the cube is required

REPOSITIONNING A CUBE

- agreed upon referential for Mex: IAU 2000 (East longitudes)
- available information:
 - MOLA derived variables (geocube): altitude, local incidence
 - Viking HR mosaic (MAPPS)
 - MGS image data set
 - in progress: MRO data
- already available in the data set: MOLA altitude and local incidence

local_light_level=cos(geocube(*,8,*)*!dtor*1.e-4)

a map of this variable is expected to match the albedo map at wavelengths < 3.5 μ m (no thermal contribution) if the region is spectrally grey

Example from orbit 1254_3

applying correlation methods makes it possible to reposition the I/F map relative to MOLA within a fraction of a pixel

the same process is required for each channel

I/F (1.3 μm)

cos(local inc.)

I/F (1.3 μm)

cos(local inc.)

l/F (1.3 μm)

shift by 2 pixels left and 1 pixel down

EVOLUTION OF THE L CHANNEL (128 to 255, 2.53 µm to 5.1 µm)

- Internal cal level is very stable for the C channel
- variations by more than a factor of 2 for the L channel over 1 year of operations
- lesser impact for the signal from Mars
- the photometric function for the L channel applies only to high level regions (close to ground calibration levels): orbits 0018 to 0500 orbits 0905 to 1206

the C to L angular distance (nominally ~ 1 pixel = 1.2 mrad) increases up to 3 mrad (nearly 3 pixels) for low levels of the internal calibration

C to L co-registration is required so as to obtain a reliable full spectrum

common reference: MOLA DTM (provided in geocube)

Co-registering the three channels: cube 1254_3

VIS channel I/F at 0.69 µm

C channel I/F at 1.30 µm

L channel I/F at 3.52 µm

shift by 5 pixels right shift by 4 pixels down

shift by 2 pixels down

the elongated PSF of the VIS channel impacts the spatial resolution

co-registration of channels, cube 18_01

1.30 µm 0.69 µm

solar longitude : Ls 333° (late southern summer)

aerosols: Optical thickness ~ 1 In the visible

decreases with wavelength: Improving contrast

black: 0.5 max, white: max

SCANNING PROBLEMS AT 128 PIXELS WHEN THE SCANNER IS TOO COLD (< -15 C)

SCANNER WARM-UP CUBES

- a solution to this problem consists in operating the scanner in a "safe" mode (64 pixels) so as to heat it up
- warm-up 64 pixels cubes are always labeled "NNNN_0" (only when before a 128 pixel cube, some are fully OK) they are stored with high compression (1 bit/data)
- they can include the last stages of detector cooling
- litmus test for using "NNNN_0" cubes: check detector temperatures "C" detector: sdat1(0,2, j) where j is the number of the scan "L" detector: sdat1(1,2, j) where j is the number of the scan Units: 0.001 °C. Valid temperatures: < -190 °C

CONCLUSIONS

- the positioning information provided by SOFTNN is reliable as a first indication. If it goes wild, this is real (the scanner is oscillating at high frequency)
- fine tuning is needed for each channel. Accurate positioning at sub-pixel levels can be achieved by comparing with MOLA slopes, altitudes.
- the offset between the C channel and the L channel depends on the status of the instrument, which can be inferred from the level of the calibration lamp