

Space Time Explorer

Agenda

Session 8 IFP ESTEC, 16th July 2010 Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

<Domain name> - 1

Introduction	10 min
Background	10 min
Mission analysis	20 min
Systems	30 min
Instrument/payload	25 min
Optics/instrument	20 min

Break	All	10 min
Communication		20 min
Cost		20 min
Data Handling		20 min
Mechanisms		15 min
AOCS		20 min

Space Time Explorer

Agenda 2/2

Propulsion	20 min
Ground Segment	20 min
Radiation	10 min
Power	20 min
Programmatics	20 min
Risk	20 min

Break	All	10 min
Thermal		20 min
Structures		20 min
Configuratio	20 min	
Conclusions	6	10 min

Space Time Explorer

Agenda - 3

Space Time Explorer

Introduction

Session 8 IFP ESTEC, 16th July 2010 Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

<Domain name> - 1

Concurrent

Introduction & Background

- STE: Space-Time Explorer
 - Precursor: "Fundamental Physics Explorer FPE-A", Tests of special and general relativity
 - Similar mission proposed as M-class mission in Cosmic Vision in 2007
 - Related missions : ACES, LISA
- CDF study on request of SRE-PA
- Eight sessions (15 June 16 July 2010)

ACES = Atomic Clock Ensemble in Space

LISA = Laser Interferometer Space Antenna

Introduction - 2

Space Time Explorer

Objectives

CDF Study objective

The objective of the STE CDF Study is to design a mission that will test Einstein's theories of special and general relativity by comparing high precision microwave clocks in space and on ground

Customer (SRE-PA) objective

The goal of this CDF study is to support the Fundamental Physics science community in preparation of the future Cosmic Vision Call for Proposals

Space Time Explorer

Study Sessions

•	Session #1:	15 th June	Tue	AM	Kick-off
•	Session #2:	17 th June	Thurs	AM	Mission/System Req. definition
•	Session #3:	22 nd June	Tue	AM	Orbit trade-off, P/L & Platform data
•	Session #4:	24 th June	Thurs	AM	Final orbit, OPS, P/L & Platform design
•	Session #5:	5 th July	Mon	AM	Mission Baseline, System Req. update
•	Session #6:	9 th July	Fri	AM	Design Baseline, Platform detail design
•	Session #7:	13 th July	Tue	AM	Project Baseline, Technology roadmap
•	Session #8:	16 th July	Fri	AM/PM	Internal Final Presentation

Space Time Explorer

STE study objectives 1/2

- Design of overall mission scenario from launch to target orbit(s)
- Design of spacecraft and transfer stages
- Refinement of the scientific payload (Assess technology readiness level of payload w.r.t. launch date in late 2022), accommodation, and their interfaces
- Assess the possible need of a Drag Free Control System
- Assess method for precise orbit determination
- Devise operational scenario with emphasis on the maximization of space-to-ground clock comparisons, the needed for ground infrastructure, and the position of high-performance clocks on ground
- Assess technology readiness of P/L, space and ground segment and identify technology needs including development plan
- Perform costing and risk analysis
- Provide a preliminary development plan, demonstrating compatibility with a launch by the end of 2022, tentatively indicated as available for an M-class 3rd slot candidate in the CV program.

Space Time Explorer

STE study objectives 2/2

Special emphasis on:

- Understand mission design drivers imposed by science
- Technology readiness levels of P/L elements
- Identify need for development activities
- Space qualification of mission critical P/L elements (e.g. frequency comb)
- High stability MW link
- High complexity of science ground stations with high performing clocks in specific locations depending on orbit

Space Time Explorer

Boundary conditions

- Potential M-class mission candidate constraints:
 - Technology Readiness level (TRL) 5 by end of Definition
 Phase (~ 2014)
 - Launch by 2022
 - Soyuz launch from CSG, Kourou
 - ESA CaC < 470 MEUR (e.c. 2010)

Space Time Explorer

Outputs

- Main CDF study outputs:
 - CDF Integrated Design Model
 - CDF Final presentations (to be made public <u>by 20 July</u> <u>2010</u>)
 - CDF Final Technical Report (to be made public)
 - Mission analysis report
- Note: Cost assessment will not be made public.

Space Time Explorer

Space Time Explorer

Background

Session 8 - IFP ESTEC, 16th July 2010 Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

Background - 1

Concurrent

Study Background

 The main reason for this study was to <u>support the Fundamental Physics</u> <u>community</u> in their preparation to answer the next Cosmic Vision (CV) call for M-class missions.

CV call will be issued end July 2010

- In 2007 the proposed Fundamental Physics (FP) missions were not selected for further study, mainly on technology readiness grounds.
- In the context of Fundamental Physics Roadmap Advisory Team (FPR-AT) work, main FP science goals in the near future were identified, e.g.:
 - "A highly accurate test of the structure of space-time by testing the gravitational redshift using a highly elliptical high Earth orbit"

Space Time Explorer

Science Objectives & Requirements

Science objectives:

Goal 1) Test Einstein's theories of special and general relativity by comparing high precision microwave clocks in space and on ground.Goal 2) Test the local position invariance of fundamental constants.

Top level science requirements:

Requirement 1)

Compare clock rates of an on-board clock and a ground clock at extremely different levels of gravitational potential and therefore high variations of the red-shift effect.

Requirement 2)

Compare clock rates of an on-board clock with two ground clocks, spaced far apart, simultaneously.

Space Time Explorer

STE study objective

Design an overall mission scenario from launch to target orbit(s).

Special emphasis on:

- Understand mission design drivers imposed by science
- Technology readiness levels of Payload (P/L) elements
- Identify need for development activities
- Space qualification of mission critical P/L elements (e.g. frequency comb)
- High stability Micro Wave Link (MWL)
- High complexity of science ground stations with high performing clocks in specific locations depending on orbit

Space Time Explorer

Boundary conditions

- Potential M-class mission candidate constraints:
 - Technology Readiness level (TRL) 5 by end of Definition Phase (~ 2014)
 - Launch by 2022
 - Soyuz launch vehicle (from Kourou and/or Baikonour)
 - ESA Cost at Completion < 470 MEUR (2010)

The Internal Final Presentation (*IFP*) will be made <u>available</u> immediately to the scientific community before the official release of the CV call for proposals.

Disclaimer: This is a <u>preliminary study</u> and all resource budgets will need consolidation via future dedicated analyses.

Space Time Explorer

Space Time Explorer

Preliminary Mission Analysis Internal Final Presentation ESTEC, 16th July 2010

Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

Mission Analysis

Summary of Requirements

- Two different science goal require:
 - Large difference in gravitational potential
 - Long measurement times at apogee and perigee
 - Combined visibility from two ground stations with large distance between them
- Conditions on perigee pass:
 - Minimum elevation above surface 10 DEG
 - Minimum pass duration is 400 seconds
 - Maximum altitude 3000 km

Space Time Explorer

Mission Analysis - 2

HEO Features

- Resonant HEO* required to achieve regular MWT** passes
 - 12, 16 and 24 hour options considered
 - Trade between number of passes for measurements and difference in the gravitational potential
- 16 hour orbit has been selected
 - Three different perigee locations with respect to the Earth
 - Repeated pattern after 48 hours
 - Two MWT to observe the perigee passage at perigee and after perigee
 - MWT observing the perigee pass is also the MWT observing the apogee pass

Space Time Explorer

* Highly Elliptical Earth Orbit

Mission Analysis - 3

** Microwave Terminal

Baseline 16 h Orbit

- Account for perturbations by non-spherical gravitational potential of the Earth by selecting orbital parameters accordingly:
- Keplerian Elements:
 - SMA: 32203.7 km
 - Eccentricity: 0.7802
 - Inclination: 63.43 DEG
 - RAAN: 336 DEG at epoch
 - Argument of Perigee: 342 DEG
 - True anomaly: 0 Deg at epoch
- Initial perigee altitude at 700 km
- Combined measurement time during one cycle is larger than 3000 seconds

Space Time Explorer

Mission Analysis - 4

16 hour orbit

Space Time Explorer

Mission Analysis - 6

• Combined visibility from two MWT on different continents

16 hour orbit

Eclipse Seasons and Duration

• One year example:

Eclipse Seasons and Duration

• One year example:

Orbit Maintenance

- Orbit maintenance DeltaV required to stabilize orbit and ensure perigee passes above MWT
- Baseline assumption: 20 m/s/year
- Numerical verification:
 - Perigee pass ground track equal after one year: 100 m/s/year average for a 10 year mission (single maneuver DeltaV between 5-200 m/s)
 - Allowing slight shift in argument of perigee: 28 m/s/year average for a 5 year mission (single maneuver DeltaV between 0-41 m/s, correction every half a year
 - The above given examples are snapshots for given starting epochs
 - It is strongly recommended to investigate the strategies in further detail to analyze launch date dependencies

Space Time Explorer

Mission Analysis - 10

Space Time Explorer

Systems Internal Final Presentation ESTEC, 16th July 2010

Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

Science Goals

Goal I

- to measure the Earth gravitational redshift to 20 ppb (2.10^{-8})

- Goal II
 - to measure the Sun null gravitational redshift to 300 ppb (3.10^{-7})
 - to obtain measurements of the the geopotential with a equivalent height resolution of 1 cm for intercontinental geopotential comparisons spanning 1 year
- These 2 scientific goals could be achieved independently since they are based on 2 different measurement principles

Space Time Explorer

Mission Requirements: Goal I

GI-R1a		Goal I shall be achieved through the comparison of one clock on-board a spacecraft in an eccentric orbit to ground clocks.
GL-P1h	Measurement	The measurements for the comparison between clocks shall be acquired by establishing a direct link between the spacecraft and a ground terminal
GI-KID	principle	equipped with a clock
GI-R1c		The measurements for the comparison between on-board and ground clocks shall be performed near perigee and near apogee.
GI-R2	Gravitational potential	The difference in gravitational potential between the measurements taken near perigee and near apogee shall be higher than 6.5E-10 x c ²
GI-R3	Measurement duration	The duration of the link from the spacecraft to the ground terminal for each measurement shall be at least 400 s.
GI-R4a	Accumulated	The total mission link time for the measurements performed near perigee shall be at least 5.E6 s.
GI-R4b	measurement time	The total mission link time for the measurements performed near apogee shall be at least 5.E6 s.
GI-R5	Number of orbits	The measurements shall be acquired during at least 200 different orbits
GI-R6	On-board clock performance	The on-board clock instability shall be lower than 3.e-14 / sqrt(tau), where tau is the integration time.
GI-R7a	Ground clock	The ground clock inaccuracy shall be lower than 5.e-17
GI-R7b	performance	The ground clock instability shall be lower than 2.e-16 at 400 s
GI-R8	Link performance	The link instability shall be lower than 4e-16 at 400 s
GI-R9a		The ground terminals shall be equipped with a clock and a microwave or optical link to the spacecraft
GI-R9h		The following ground terminals shall be used at least: a ground terminal located near Boulder, Colorado (US), a ground terminal located in Europe (in
011100	Network of ground	either Paris, Torino, Braunschweig, Duesseldorf, Teddington), and a ground terminal located near Tokyo (Japan)
GI-R9c	terminals	The network of ground terminals shall ensure that each orbit at least two different ground terminals can take measurements near perigee
GI-R9d		The network of ground terminals shall ensure that each orbit at least two different ground terminals can take measurements near apogee
GI-R9e		Additional ground terminals using transportable clocks and link equipment shall be located where needed
GI-R10a	Orbit dotormination	The uncertainty in the knowledge of the position of the spacecraft shall be lower than 2 m (spherical, 1-sigma) whenever measurements are taken.
GI-R10b	b	The uncertainty in the knowledge of the velocity of the spacecraft shall be lower than 0.2 mm/s (spherical, 1-sigma) whenever measurements are taken.

Space Time Explorer

Mission Requirements: Goal II

GII-R1	Measurement principle	Goal II shall be achieved through the comparison of pairs of distant ground clocks performed via a simultaneous link with the spacecraft
GII-R2	Measurement duration	The duration of the link from the two ground terminals to the spacecraft for each measurement shall be at least 2 h.
GII-R3	Accumulated measurement time	The total link time for the measurements performed for a given pair of ground clocks shall be at least 150 days.
GII-R4a	Ground clock performance	The ground clock inaccuracy shall be lower than 1.e-18
GII-R4b		The ground clock instability shall be lower than 1.e-18
GII-R5a	Network of ground terminals	The ground terminals shall be equipped with a clock and a microwave or optical link to the spacecraft
GII-R5b		The following ground terminals shall be used: a ground terminal located near Boulder, Colorado (US), a ground terminal located in Europe (in either Paris, Torino, Braunschweig, Duesseldorf, Teddington), and a ground terminal located near Tokyo (Japan)
GII-R5c		The following pairs of ground clocks are to be compared: US-Europe, Europe-Japan, US-Japan

Space Time Explorer

Spacecraft requirements

SR1	Non-gravitational acceleration	The spacecraft non-gravitational acceleration shall be lower than 1.e-5 m/s/2
SR2	Microvibrations	The microvibration environment on the payload shall be lower than 8E-5 (m/s^2) f $(-1/2)$, with f between 2 mHz and 10 Hz
SR3a		The operating temperature of the payload shall be kept between 10 and 30 deg
SR3b	Payload thermal	The thermal instability of payload interface shall be lower than +-2 deg over 1 orbit
SR3c		The non-operating temperature of the payload shall be kept between -40 and 60 deg.
SR4	Pointing	The spacecraft pointing error shall be lower than 0.3 deg if an optical link is used.
SR5	Orientation of the clock	The vacuum tube of the on-board clock should be oriented perpendicular to the orbital plane.
SR6a		The DC magnetic field at the location of the on-board clock shall be lower than 1 G
SR6b	Magnetic field	The magnetic field variation at the location of the on-board clock shall be lower than 140 dBpT in [100 mHz, 1 Hz]

Space Time Explorer

Mission Constraints

- Launch by 2022
- Soyuz launch vehicle
 - from Kourou and/or Baikonour
- Technology Readiness level (TRL) 5 by end of Definition Phase (~ 2014)
- ESA Cost at Completion < 470 MEUR (2010)

Space Time Explorer

Launch

- Baseline launch is Soyuz from CSG (Kourou)
- Soyuz performance data on this or similar missions are not reported in Arianespace User Manual (UM)
 - Soyuz UM (iss. 3, 2001) by Starsem reports data for Baikonur launches only, and for a similar mission (Molniya-type orbit, ~40000 km apogee, 63.4 deg inclination), a performance slightly lower than 1900 kg is declared
 - Reductions are expected due to the higher apogee, and safety restrictions for stages re-entry. CSG lower latitude wrt Baikonur will lead to a slight improvement.
- Soyuz baseline mission profile envisages 3 Fregat burns, for max. mission duration > 4 hrs (but evidence of at least one 6h45m flight).
- Intermediate firing may be useful to correct RAAN and perigee argument

Space Time Explorer

Systems - 7

Soyuz Launch: Ground Track

Soyuz Launch: Launch Sequence

- Fregat 1st burn:
 - Injection into a 250 x 830 km orbit
 - 1 orbit coast arc (about 1 hr)
- Fregat 2nd burn:
 - Injection into a 690 x 8600 km orbit
 - 1 orbit coast arc (about 3 hrs)
 - Visibility TBC (McMurdo, NASA)
- Fregat 3rd burn:
 - Injection into the final 700 x 50000 km orbit
 - Visibility TBC (Awarua, NZI, used for ATV)
- Overall mission duration: 4h35m
- Payload: 1658 kg
 - -1.5% for model accuracy = 1633 kg

Space Time Explorer

Spacecraft architecture

- Architecture concept based on **modularity**:
 - S/C composed of two modules
 - Service module
 - Payload module
 - The service module may be based, if technically feasible, on existing platforms
 - Minimize development cost
 - The payload module shall be as self-contained as possible
 - Maximum commonality / re-use of ACES
 - Compatibility with several platforms
- The proposed modular architecture may involve a mass penalty compared to a more optimized desig
 - Soyuz performance should offer comfortable mass margins

Space Time Explorer

Systems - 10
Payload: interfaces to platform

- Payload-platform interfaces based on modularity and other considerations and trade-offs
 - Comms
 - MWL only used for science
 - Additional comms link in the service module for TM/TC
 - Data handling
 - Dedicated payload computer (XPLC) and power distribution unit (PDU)
 - Additional on-board computer and power control in the service module
 - Thermal
 - Payload thermal control decoupled from service module

Space Time Explorer

Payload: MWL vs. Optical link

- The optical link offers:
 - higher link stability
- but...
 - requires new set of optical ground terminal
 - requires good atmospheric conditions (not all passes would be used for measurements ⇒ increased mission duration if only link on-board)

• **Baseline** for study: **MWL + Optical link**

- Adding the optical link reduces the risk of not being able to meet the stringent timing stability requirement for the MWL link
- Acceptable in terms of mass, power, cost

Space Time Explorer

Payload Module

- Main differences wrt ACES
 - MOLO instead of SHM
 - Extra shielding required against radiation
 - Increased structural mass
 - MWL
 - Primary frequency allocation required
 - Antenna design to cope with variations between perigee and apogee
 - Larger S-band HGA (deployable because of accommodation constraints)
 - Increased power required for apogee
 - Optical link (LCT)
 - Increased mass (50 kg)
 - Increased power (160 W)
 - Accommodation
- Design option
 - Fixed antennas (requires nadir pointing) preferred over steerable
 - LCT already offers hemispherical coverage

Space Time Explorer

Payload Module Mass Breakdown

		Eleme	nt 1 - P/L Module	9		
FUNCTIONAL SUBSYSTEM	nr	Mass (kg) per unit	Total Mass (kg)	Margin (%)	Margin (kg)	Mass (kg) with Margin
Structure			63.59	20.00	12.72	76.31
Thermal Control			11.32	5.00	0.57	11.88
Mechanisms			0.88	5.00	0.04	0.92
Communications			18.00	20.00	3.60	21.60
MWL - EU	1	14.00	14.00	20.00	2.80	16.80
MWL - S-Band Antenna	1	3.00	3.00	20.00	0.60	3.60
MWL - Ka Up-Link Antenna	1	0.20	0.20	20.00	0.04	0.24
MWL - Ka Up-Link Antenna	1	0.20	0.20	20.00	0.04	0.24
MWL- RF Cables	3	0.20	0.60	20.00	0.12	0.72
Data Handling			13.58	10.00	1.36	14.94
ICU (XPLC + PDU)	1	13.58	13.58	10.00	1.36	14.94
Harness			11.51	10.00	1.15	12.66
Instruments			190.49	11.63	22.15	212.64
PHARAO	1		91.00	10.00	9.10	100.10
MOLO	1		31.00	20.00	6.20	37.20
FCDP	1		8.00	10.00	0.80	8.80
CCR	1		2.00	10.00	0.20	2.20
GNSS Unit	1		8.49	10.00	0.85	9.34
LCT	1		50.00	10.00	5.00	55.00

Space Time Explorer

Payload Module Mass Budget

Ρ/	L	Μ	0	d	u	e	

	Without Margin	Margir	n	Total	% c	of Total
Dry mass contribut	tions	%	kg	kg		
Structure	63.59 kg	20.00	12.72	76.31	21.74	
Thermal Control	11.32 kg	5.00	0.57	11.88	3.39	
Mechanisms	0.88 kg	5.00	0.04	0.92	0.26	
Communications	18.00 kg	20.00	3.60	21.60	6.15	
Data Handling	13.58 kg	10.00	1.36	14.94	4.26	
Harness	11.51 kg	10.00	1.15	12.66	3.61	
Instruments	190.49 kg	11.63	22.15	212.64	60.59	
Total Dry(excl.adapter)	309.37			350.	96	kg
System margin (excl.adapter)		20).00 %	70.	19	kg
Total Dry with margin (excl.adapter)				421.	15	kg

Space Time Explorer

Payload Module Configuration

Space Time Explorer

Payload power modes

- OFF:
 - All instruments and S/S of the STE P/L are powered OFF
- STAY ALIVE:
 - PHARAO ion pumps are powered to preserve vacuum conditions in the PHARAO tube
 - MOLO requires also stay alive power
- LOW POWER:
 - Thermal controls of all STE instruments & S/S requiring good thermal stabilities and long settling times (e.g. PHARAO, MOLO, on-board USO) are powered on
 - On-board computers (XPLC, instruments and subsystems specific computers) are powered **on** and deliver telemetry, in particular for temperature monitoring at the reference points
- NOMINAL:
 - All STE instruments and S/S are powered on and active. They can receive telecommands and transmit telemetry

Space Time Explorer

Payload Module Power Budget

ltem	Nominal Mode [W]	Safe Mode [W]
PHARAO	113.5	2.5
MOLO	60	2
FCDP	8.4	0
MWL	71.5	0
LCT	160	0
GNSS	7	0
CCR	2	0
ICU	175	3.5
TOTAL	597.4	8.0

Space Time Explorer

Spacecraft operational modes

Mode Name	PHARAO	MOLO	FCDP	MWL	LCT	Rest of P/L	AOCS	Thermal	Power	DHS	Comms	Acronym
Start-up	Stay Alive	Stay Alive	OFF	OFF	OFF	OFF	OFF	OFF	ON	ON	RX On Tx OFF	SUM
Safe	Stay Alive	Stay Alive	OFF	OFF	OFF	OFF	ON	ON	ON	ON	RX On Tx OFF	SM
Star-acquisition	Stay Alive	Stay Alive	OFF	OFF	OFF	OFF	ON	ON	ON	ON	RX On Tx OFF	SAM
Payload start-up	Low power	Low power	ON	ON	ON	ON	ON	ON	ON	ON	RX On Tx On	PSM
Nominal	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	RX On Tx On	NM
Manoeuvre	Low power	Low power	OFF	OFF	OFF	ON	ON	ON	ON	ON	RX On Tx OFF	MM
Eclipse	ON	ON	ON	OFF	OFF	ON	ON	ON	ON	ON	RX On Tx OFF	EM

Space Time Explorer

Spacecraft operational modes

Space Time Explorer

- Manoeuvre mode (MM) is engaged for the orbit correction manoeuvres (once/twice a year)
- Eclipse mode (EM) is engaged once per orbit during the apogee eclipse season (2 weeks a year) for 3 hours

Considerations on orbit geometry

- Beta angle (angle between the sun direction and the orbital plane)
 - Minimum yearly variation for STE reference orbit:
 [-(orbit inclination obliquity) : +(orbit inclination obliquity)] = [-40 : 40 deg]
 - Maximum yearly variation for STE reference orbit: [-(orbit inclination + obliquity) : +(orbit inclination + obliquity)] = [-87 : 87 deg]
 - Exact beta angle evolution will depend on initial RAAN and launch date, but with the precession of the orbital plane, the maximum yearly variation will be encountered during mission lifetime

Systems - 21

Spacecraft Solar Arrays & Attitude

- Body mounted vs. deployable & rotating SA
 - Body-mounted SA discarded due to the much larger surface required (large beta-angle variations)
 - Deployable & rotating SA selected after checking that the microvibrations generated by the SADM are within the required level
- Attitude
 - Nadir-pointing, yaw-steering (optimal for power and thermal reasons)

Space Time Explorer

- The goal of having PHARAO oriented perpendicular to the orbital plane cannot be achieved
 - Potentially, when the beta angle is low (~ < 20 deg), we could fly with the solar arrays perpendicular to the orbital plane (no yaw steering)
 - only for few months per year
 - It would complicate the thermal design

Space Time Explorer

Mission Duration

- Scientific requirements (in particular, minimum total contact time at perigee) lead to long mission durations (around 10 years)
- However
 - Delta-V for orbit maintenance (20 m/s per year) and attitude control increase with mission duration ⇒ this translates into increased spacecraft mass and cost
 - Operations cost also increase with mission duration
- Mission duration was assumed to be 5 years

Space Time Explorer

Service Module (1)

• Potential use of existing platform

P	latform	PRIMA	PROTEUS	Flexbus	Leostar	MiniSAT	Giove A	Giove B
Man	ufacturer	Alcatel Alenia Space	Alcatel Alenia Space	US	Orbital	SSTL	SSTL	Thales Alenia Space
	Orbits	LEO and MEO (GEO and GTO also possible)	LEO (from SSO to almost equatorial)	MEO, HEO	LEO: 450 to 1,000 km altitude, 28° to 110° inclination			
	Altitude	From 450 km to 1600 km (typically)	from 500 to 1500 km					
	Inclination	From 0° to 100°	from 20 to 145 deg					
	Wet Mass	400 to 1500 Kg	Up to 670 kg	150 kg and 1000 kg	225 to 1000 kg	~600kg	600 kg at launch	530 kg
Mass	P/L mass	Up to 700, 800 Kg	Up to 360 kg	 500 kg (dependent on selected launcher) 	210 kg -up to 550 kg	<~200kg		
	Bus	28 V unregulated	28 V unregulated			unregulated 28V bus	700-900W	700-900W
	P/L	from 250 to 800W	300W avg.	~ 600 W (avg.) - ~ 3 kW (peak) (dependent on selected launcher)	118 W orbit average (Standard), Up to 2 kW (Optional)	250W arrays & battery; 175W arrays only		1100 W via 2 Sun-tracking arrays each 4.34 m long
Power	Solar Cells	GaAs (two deployable rotating wings)	Silicon (two symmetric rotating wing arrays)			Nine body mounted GAAs cell panels @~60W each (72W	700 vv via 2 Sun-tracking arrays (SMART-1 design reused) each 4 54 m long	
	Battery	NiH2	Li Ion, 78Ah			22 cell 7Ah NiCd battery (x3): 21Ah total capacity@28V		
Pro	opulsion	Hydrazine monopropellant 4*1N thruster	Hydrazine monopropellant 4*1N thruster	monopropellant, gas propulsion reaction	Blowdown monopropellant	Reaction wheels (x4), Torque		Hydrazine system with single tank of 28 kg
	Propellant mass	78 kg	28 kg		up to 140 kg propellant (Optional)			
L	ifetime	5 years	3 to 5 years depending on the orbit	5 years	Up to 10 years with fully redundant avionics	Mission dependent - UoSAT buses have operated for over 10yrs	Estimated 2.5 years	Estimated 2.5 years
н	eritage	Cosmo-Skymed Radarsat-2 Sentinel-1	SMOS Jason 2 Corot Calipso-Cena Megha-Tropiques	Cryosat GRACE TerraSAR	OCO (NASA) Dawn (NASA)	RadidEye		

Space Time Explorer

Service Module (2)

- In particular, the potential use of a PROTEUS-like platform was investigated in detail
 - Platform for low-Earth orbit observation satellites in the range 500-700 kg
 - Preliminary payload mass and power estimations showed that this type of platform may fit STE needs
 Space Time Explorer

SATELLITE	JASON1	CALIPSO	COROT	SMOS	JASON2
Mission	Ocean Altimetry: Nadir Altimeter	Atmosphere (clouds, aerosols): LIDAR	Astronomy (astero- sismology, exo-planets)	Soils Moisture Oceans Salinity: L Band radiometer	Ocean Altimetry: Nadir Altimeter + Wide Swath
Launch	Dec 2001	July 2005	July 2006	Sept. 2007	June 2008
Launcher	DELTA 2 dual la configuration	unch	SOYUZ	ROCKOT	DELTA 2
Cooperation	NASA/JPL	NASA/LaRC	ESA, Austria, Spain,Belgium, Brazil	ESA leadership	NASA/JPL
Orbit/ Pointing	1336/1336/66°, drifting pointing : +Z nadir yaw steering	705/705/SSO 13h30 pointing : +X Nadir	896/896/90° (polar) pointing : inertial, orbit normal	756/SSO 6h pointing : +X nadir, 30° canted	1336/1336/66°, drifting pointing : +Z nadir yaw steering
S/L mass PL mass	485 Kg 175 Kg	580kg 270kg	610 Kg 300 Kg	670 Kg 360 Kg	600 Kg 290 Kg
S/L power PL power	420 W 165 W	560 W 282 W	450 W 150 W	630 W 350 W	580 W 300 W

Service Module (3)

- Main differences wrt a PROTEUS-like platform due to STE orbit, payload
 - High apogee altitude prevents the use of magneto-torquers bars for wheel desaturation or safe mode around apogee
 - Need for attitude thrusters
 - High Delta-V required for orbit maintenance
 - Need for larger tanks \Rightarrow larger dimensions of service module
 - Higher radiation dose compared to LEO
 - Extra shielding required for equipment not to compromise lifetime
 - Longer eclipses around apogee compared to LEO
 - Check battery
 - Need for active thermal control of the payload during safe mode

Space Time Explorer

FUNCTIONAL SUBSYSTEM	nr	Mass (kg) per unit	l otal Mass (kg)	Margin (%)	Margin (kg)	Mass (kg) with Margin
Structure			121.23	13.78	16.70	137.93
Thermal Control			0.00	-	0.00	0.00
Mechanisms			12.00	5.00	0.60	12.60
Communications			7.64	5.59	0.43	8.07
TT&C Unit S-Band	2	3.50	7.00	5.00	0.35	7.35
LGA-Nadir	1	0.10	0.10	5.00	0.01	0.11
LGA-Zenith	1	0.24	0.24	5.00	0.01	0.25
Harness	2	0.15	0.30	20.00	0.06	0.36
Data Handling			7.70	10.00	0.77	8.47
AOCS			41.09	5.88	2.42	43.51
Coarse Gyrometer - SELEX CRS	2	0.80	1.60	5.00	0.08	1.68
tar Tracker Optical Head - Sodern Hydra	3	1.25	3.75	10.00	0.38	4.13
ar Tracker Electrical Unit - Sodern Hydra	2	1.75	3.50	10.00	0.35	3.85
Sun Sensor - TNO TPD	8	0.03	0.24	5.00	0.01	0.25
Reaction Wheel - Rockwell Collins	4	8.00	32.00	5.00	1.60	33.60
Propulsion			16.71	10.20	1.70	18.41
Service Valves	4	0.08	0.32	5.00	0.02	0.34
Propellant Tank	1	8.20	8.20	10.00	0.82	9.02
Pressure Transducer	4	0.30	1.20	5.00	0.06	1.26
Propellant Filters	1	0.08	0.08	5.00	0.00	0.08
Latch Valve	2	0.36	0.72	5.00	0.04	0.76
Thrusters (1N)	4	0.78	3.13	5.00	0.16	3.29
Piping	25	0.03	0.79	20.00	0.16	0.95
Bracketing	1	1.52	1.52	20.00	0.30	1.82
N2 gas	1	0.75	0.75	20.00	0.15	0.90
Power			72.10	9.69	6.99	79.09
PCE or PCU	1	6.10	6.10	10.00	0.61	6.71
Battery	1	37.50	37.50	10.00	3.75	41.25
BEU (on side of battery)	1	4.50	4.50	5.00	0.23	4.73
UMB IF/BAT SW (replace DBox)	1	2.00	2.00	10.00	0.20	2.20
Solar Array (wing)	2	11.00	22.00	10.00	2.20	24.20
Harness			29.91	20.00	5.98	35.89
	_					

Service Module Mass Breakdown

Service Module Mass Budget

Service Module

	Without Margin	Margir	n	Total	% 0	f Total
Dry mass contributions	-	%	kg	kg		
Structure	121.23 kg	13.78	16.70	137.93	40.10	
Thermal Control	0.00 kg	-	-	-	-	
Mechanisms	12.00 kg	5.00	0.60	12.60	3.66	
Communications	7.64 kg	5.59	0.43	8.07	2.35	
Data Handling	7.70 kg	10.00	0.77	8.47	2.46	
AOCS	41.09 kg	5.88	2.42	43.51	12.65	
Propulsion	16.71 kg	10.20	1.70	18.41	5.35	
Power	72.10 kg	9.69	6.99	79.09	22.99	
Harness	29.91 kg	20.00	5.98	35.89	10.43	
Total Dry(excl.adapter)	308.38			343.	97	kg
System margin (excl.adapter)		20	.00 %	68.	79	kg
Total Dry with margin (excl.adapter)				412.	76	kg
Other contributions						
Wet mass contributions						
Propellant	61.13 kg	N.A.	N.A.	61	.13 12.90	
Adapter mass (including sep. mech.), kg	110.00 kg	0.00	0.00	110.00	0.19	
Total wet mass (excl.adapter)				473.	89	kg

Space Time Explorer

Mass Budget

Spacecraft			
Total Dry (no system margins)		694.93	kg
Total Dry (system margins)		833.91	kg
Total Wet (excluding adapter)		895.04	kg
Launch mass (including adapter)		1005.04	kg
Target spacecraft mass at launch		1633.00	kg
	Below Mass Target by:	627.96 kg	

Space Time Explorer

Spacecraft configuration (1)

Space Time Explorer

Spacecraft configuration (2)

Space Time Explorer

Orbit Determination

- The required orbit determination accuracy is to be achieved in post-processing through the combination of the following type of measurements
 - Radiometric tracking of the spacecraft through the S-band transponder
 - On-board GNSS receiver
 - Laser ranging using the CCR
 - Ranging from microwave and optical links
- A dedicated study is further required to estimate precisely the orbit determination accuracy achievable
 - Preliminary analyses indicate that it shall be possible to reach the required accuracy

Space Time Explorer

Orbit Determination: GNSS

- Estimation of orbit determination error for STE orbit using on-board GNSS
 - Galileo and NAVSTAR ephemeris inaccuracy: 7 m (after 8 hours)
 - On-board GPS clock error: 1.5 m
 - Earth ionosphere: 0.5 m
 - NAVSTAR Selective Availability
 - Off: 0 m
 - On: 100 m
 - Grand total: 10 m (SA is nowadays off)
- Improvement over time
 - 8 hours of on-board OD produce accuracy of 10 m
 - 24 hours of OD reduces the error to 7 m
 - 48 hours of OD reduces the error to 2 m

Systems - 34

Space Time Explorer

Payload

Final Presentation ESTEC, 16 July 2010

Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

1

Outline

- Payload Requirements
- Payload Baseline Design and Interfaces
- Payload Equipments
 - RF: PHARAO, FCDP, GNSS Rx, MWL
 - Optical: MOLO, LCT, CCR
 - Data Handling: XPLC/ICU

STE PL Requirements

* derived from Mission Requirements (STE_Requirements_v0.xls)

Space Time Explorer

STE PL Requirements

Temperature*: $+10^{\circ}$ C to $+30^{\circ}$ C(driven by PHARAO)Temperature Stability*: $\leq \pm 2^{\circ}$ C over 1 orbit(driven by PHARAO)

DC Magnetic Field: ≤ 1G(driven by PHARAO)Magnetic Field Variation: < 140dBpT in [100mHz, 1Hz]</td>(driven by PHARAO)

Acceleration*: $\leq 1 \ \mu g$ (driven by MOLO)Micro-vibration*: $\leq 8 \ \mu g \ Hz^{-1/2}$ in [2mHz, 10Hz](driven by MOLO)

Radiation: ≥ 30krad

(driven by orbit)

* derived from Mission Requirements (STE_Requirements_v0.xls) *Space Time Explorer*

STE PL Requirements

Operational Requirements:

Lifetime*: ≥ 5 years

* derived from Mission Requirements (STE_Requirements_v0.xls) *Space Time Explorer*

STE PL Design & Interface

6

STE PL Description

Clock Signal Generation:

MOLO: Microwave and Optical Local Oscillator PHARAO: Ultra-Stable Cold-Atom Caesium Clock FCDP: On-board Frequency Comparison and Distribution

Clock Signal Transmission:

MWL: Two-Way Dual Frequency (S/Ka) Microwave T&F Transfer Link LCT: Two-Way Optical T&F Transfer Link

Orbit and Clock Control: GNSS Rx: On-board GNSS timing receiver and antenna CCR: Passive Corner Cube (SLR) Reflector XPLC/ICU: On-board Computer and Power Distribution

PHARAO

source: ACES Design Report - ACE-RP-10000-002-AST iss.10, 31-Jul-2009

item	mass	power
ТС	46	6
SL	23	46
SH	7	26
UGB	7	31
BEBA	1.5	4
Harness	4	-
Mounting	2.6	-
Elec. Bracket	1	-
TOTAL:	92.1	113W

PHARAO

Delta wrt ACES:

- Performance: factor 5 better (thanks to MOLO)
- Lifetime and reliability (1.5y vs. 5+y)
- Radiation (LEO vs HEO)
- Technology obsolescence and evolution (e.g. Laser Diodes, electronics...)

Technology Assessment:

- Performance demonstrated by extrapolation
- No critical technology, provided obsolescence and radiation are carefully investigated
- Estimated current TRL: 5

FCDP

source: ACES Design Report - ACE-RP-10000-002-AST iss.10, 31-Jul-2009

item	mass	power
FCDP	4kg	9W

Space Time Explorer

10

FCDP

Delta wrt ACES:

- Phase detector resolution, Phase/Frequency tracking: factor 5 improvement
- MOLO signal down-conversion (or PHARAO signal up-conversion)
- Output Frequency to MWL and MOLO (100MHz \rightarrow 1~10GHz)
- Lifetime and reliability (1.5y vs. 5+y)
- Radiation (LEO vs HEO)
- Technology obsolescence and evolution

Technology Assessment:

- Availability of space-qualified high-resolution phase detector to be confirmed
- No critical technology, provided obsolescence and radiation are carefully investigated
- Estimated current TRL: 5

GNSS Rx

Two potential candidates, with guaranteed performance in GEO

RUAG Space

RUAG

ThalesAlenia Space

structure Hybrid navigation for launcher Precise L1 or L1&L2CS code/carrier data available on-ground for postprocessing

 L1/L1 or L1/L2CS capability
 L1 C/A direct code acquisition on L1band
 L2CS direct code acquisition on L2band (civil service)
 12 channels processed in parallel in

Applications

Navigation for satellite
Relative navigation for RDV in orbital

structure

Main features

Single or Dual Band GPS Navigation Unit

GPS Precise Orbit Determination

item	mass	power
Receiver	2.8kg	8.5W
Antenna	0.8kg	_

Space Time Explorer

source: datasheets

item	mass	power
Receiver	1.2kg	10.5W
Antenna	0.8kg	-
GNSS Rx

Delta wrt COTS:

- Performance in HEO vs. GEO
- GPS L1/L2 vs. GPS + Galileo
- Radiation (GEO (20krad) vs HEO)

Technology Assessment:

- Performance not demonstrated in HEO
- Potential benefit of Galileo not demonstrated yet
- No critical technology, provided radiation issues are carefully investigated
- Estimated current TRL: 8 (GPS), 5 (GPS + Galileo)

(cf. presentation P.Concari)

MOLO

Preliminary Block Diagram:

(cf. presentation Z.Sodnik)

Space Time Explorer

15

MOLO

 Optical frequency reference – (Aoelus ALADDIN Reference Laser Head (RLH)

 Complete package SL and RL space qualified Space Time Explorer MenloSystems Optical Frequency synthesier -(Ddevelop needed + space qualification)

MOLO

MOLO criticality assessment:

- Reference Laser stability performance
 - Improved Cavity Finesse
 - Thermal sensitivity
 - Micro-vibration sensitivity
 - Radiation sensitivity (50krad demonstrated for Aladin-RLH)

(cf. presentation Z.Sodnik)

(cf. presentation Z.Sodnik)

Instruments 2

Session 8 IFP ESTEC, 16th July 2010 Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

<Domain name> - 1

Frequency comb

- TRL 4
 - Validated in laboratory environment
 - Radiation and thermal cycling done on fiber laser
 - Tests not fully successful: variation in 1st spectral line/ gap between spectral lines
- FEA to be performed on Freq.comb to evaluate space environment
- Manufacture model and test in space environment (thermal, vibrations, shocks ...)

Space Time Explorer

Criticalities - 2

Laser cavity

- TRL 4
 - Validated in laboratory environment
- FEA currently running on Laser cavity to evaluate space environment (to be completed in Sept.2010)
- Manufacture model and test in space environment (thermal, vibrations, shocks ...)

Space Time Explorer

Criticalities - 3

Space Time Explorer

Optical Link Payload

Final Presentation ESTEC, 16th, July 2010

Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility <Optical Link Payload> - 1

Optical Link Geometry

Space Time Explorer

Space Time Explorer

Space Time Explorer

Laser communication terminal block diagram

Space Time Explorer

Laser Communication Terminal, Design Features

Link	LEO – LEO	LEO – GEO	
Data Rate	5.625 Gbps	1.800 Gbps	
Range	1,000 - 5,100 km	> 45,000 km	
Target BER	1x10 ⁻⁸	1x10 ⁻⁸	
Transmit Power	0.7 W	2.2 W	
Telescope Diameter	125 mm	135 mm	
Mass	~ 35 kg	~ 50 kg	
Power Consumption	~ 120 W max.	~ 160 W max.	
Volume	~ 0.5 x 0.5 x 0.6 m ³ ~ 0.6 x 0.6 x 0.7 m ³		

Space Time Explorer

Optical Link Ground Terminal

Laser Communication Terminal, Ground Station with AO

Space Time Explorer

LO Reference (also for MOLO?)

Reference Laser Unit (RLU)

- 20 50mW output power
- 1064nm cw
- Redundant Pump Module
- 10W EOL
- Volume 1 liter
- Mass 1kg

R

- Analog Slow Output power tuning up to +/.30% with 1Hz BW
- Analog Coarse Frequency Tuning up to +/-5GHz with 10 Hz BW
- Analog Fine Frequency Tuning up to +/-80MHz with 80kHz BW

Space Time Explorer

Optical Reference cavity within MOLO?

New thermal controlled laser cavity required with 10-15 stability

Space Time Explorer

Optical Link Maturity

Component maturity:	
 LO local oscillator laser: 	TRL9
 PLL optical phase locked loop: 	TRL9
 Code delay detector: 	TRL9
 EOM electro-optical phase modulator: 	TRL9
 Optical amplifier: 	TRL8
 Laser terminal pointing, acquisition and tracking: 	TRL8
 Carrier comparison detector: 	TRL6
 PN code generator: 	TRL6
 AOM acousto-optical modulator: 	TRL4
– MOLO:	TRL4
 Carrier comparison and code delay measurement: 	TRL3
System overall maturity:	TRL4

• Problems:

٠

٠

- Temporary fading or loss of detector signal due to atmospheric turbulence
- Cloud probability at receiving stations (space diversity if possible)

Space Time Explorer

Diversification of OGS

Statistically independent OGSs with equal p_{cloud}

- # of available stations has binomial distribution
- Estimation of the number of stations:

 $LOP = p_{cloud}^{n} \qquad n = \frac{(LOP)_{dB}}{(p_{cloud})_{dB}}$

Network	spec	Cloud probability		Cloud probability		
LOP	Availability	40 %	30 %	20 %	10 %	5 %
10 ⁻²	99 %	5	4	4	4	2
10 ⁻³	99.9 %	8	6	5	3	3
10 ⁻⁴	99.99 %	11	8	6	4	4
10 ⁻⁵	99.999 %	13	10	8	5	4

Number of OGS to meet specified network LOP:

Space Time Explorer

<Optical Link Payload> - 12

LOP = Link Outage Probability

LOP = 1 - Availabilityn = number of OGS

Communications

Session 8 IFP ESTEC, 16th July 2010 Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

STE – Communications

Two independent systems:

- MWL, in the P/L module:
 - Electrical I/F only with P/L electronic
- TT&C, in the Platform module:
 - Electrical I/F only with Platform OBC

Space Time Explorer

STE Communications

MWL

Space Time Explorer

ACES MWL (ISS orbit)

Onboard and Ground comparison of relative clock differences based on PseudoNoise (PN) technique on the bases of ultra-stable external clock (FCDP) for fundamental Physics and others ancillary tasks.

Band	Ku down link	Ku up-link	S down link
Frequency	14.70333 GHz	13.475 GHz	2.248 GHz
Transmit Power	0.5 W	2 W	0.5 W
Code Rate	100 MChip / s	100 MChip / s	1 MChip / s
Received C/No @ 10°	~47.8 dBHz	~48.9 dBHz	~50 dBHz
Code noise @ 1s, 10°	29 ps	25 ps	2.23 ns
Carrier noise @ 1s, 10°	0.09 ps	0.08 ps	0.45 ps
Carrier Doppler, max.	+/- 400 kHz	+/- 350 kHz	+/- 58 kHz
Carrier Doppler rate, max.	6.5 kHz/s	6 kHz / s	1 kHz/s
Code Doppler, max.	+/- 2700 Hz	+/- 2700 Hz	+/- 27 Hz
Code Doppler rate, max.	44 Hz/s	44 Hz/s	0.4 Hz/s

ACES main MWL specs.

ACES MWL FS EU

Space Time Explorer

From ACES to STE MWL

Same architecture and external I/F of ACES (clock, TM/TC, Pwr...)

Evaluation of the Δdevelopment required from ACES to STE

Preliminary proposed MWL for STE

Communications - 5

MWL: major changes from **ACES**

- Highly Elliptical Orbit (Low Circular for ACES):
 - Variable FOV (apogee \rightarrow perigee)
 - Higher distance TX-RX with wider variation (apogee → perigee)
- Secondary frequency allocation not acceptable for STE mission (non demonstrational mission)
- Lifetime and Radiation

Space Time Explorer

MWL: Frequency Band Selection

- Existing Design (ACES)
 - S-Band in a Primary allocation for Cat.A SR Downlink
 - Ku-Band in a Secondary allocation for Car A SR Up/Down Links

NOT Demonstration Mission

Potential Huge Interferences from Primary Allocation to Ground Terminal (MOBILE, FIXED)

- New Design (STE)
 - S-Band in the same Primary allocation band (same or very close freq.)
 - Ka-Band replaces Ku-Band: Primary allocation for Ca.A SR Downlink available and Uplink ongoing (WRC-12, low risk)
- Drawback (minor)
 - Ka-Band redesign: no technologically critical
 - Split antenna for Ka-Up/Down links: minor impact for S/C

Space Time Explorer

From ACES to STE MWL

Minor activity:

- Onboard Orbit propagator to be updated
- Code-Search speed algorithm to be updated
- RF-Frontend (space and ground):
 - Dynamics optimization
 - Higher RF Power output (2.5-3W compared 0.4W of ACES)
 - Bigger antenna on ground (1.5-2.0m)

Major activity:

- Onboard antenna new architecture/re-design
- Onboard and ground Ku assembly to be redesign on Ka band:
 - Frequency will be 22 and 26Ghz (ACES 13 and 14GHz)

Space Time Explorer

STE MWL Concept

- Operational only in Nominal attitude (Nadir pointing)
- HEO (32200 Km semi major axes, 16h frozen orbit)
- Scientific Measurement near Apogee/Perigee
- Full orbital coverage
- Target-pointing maneuvers are not allowed
- Antenna Phase centre knowledge requirements

NO IsoFlux pattern

Specific Antenna Mask

- Antenna Array based on 2 predefines positions VPD (Variable Power Divider)
- Antenna reconfiguration non in Scientific Measurement regions

Space Time Explorer

Space Time Explorer

MWL Onboard Antenna: overview

- 2 combined antennas: (almost unfeasible)
- Reflector shaping (potentially not feasible)
- Zoomable beam/digital beam forming (high confidence of feasibility):
 - TRL?
 - Mechanisms?
 - Phase knowledge?
- Switching between 2 antennas (high confidence of feasibility):
 - phase jump uncertainty due to the switch repeatability: detection or compensation
 - phase jump due to antenna switching (relative accommodation depending)
- Antenna Array with fixed configuration (high confidence of feasibility):
 - More flexibility in the design
 - Accommodation constraints relaxed w.r.t. Switching solution
 - Space/Volume saving

Space Time Explorer

MWL VPD Antenna Array

Radiating elements grouped in two (or more) sets:

- Core-set to provide Low-gain wide FOV antenna
- Core-set + Ring to provide Hi-gain narrow FOV antenna

VPD with 2 predefined positions for pattern selection

Space Time Explorer

MWL redesign scale and TRL

Relative scale of development:

White: no modification (TRL≥6)

Green (minor): parameters or power level modification (TRL≥6)

Yellow (medium): redesign due to the new frequency band (common band) (TRL≥5)

Red (major): new design (unusual pattern requirement but less complex system then existing space-proven design) (TRL≥4-5?)

Space Time Explorer

MWL Link Budgets

Based on:

- HEO 32200Km semi major-axes
- Min elevation 5 deg for signal acquisition, 10 for measurements
- Signal property assumed as for ACES
- Computational model derived by ACES
- Margin computed in line with ACES criteria (similar margin)
- Optimization of Apogee and Perigee
- Antenna reconfiguration (switching) at midrange

Parameter	Unit	Hi-Gan	Low-Gain
S-Band C/No	dB	From 3.0 to 10.0	From 3.0 to 22.7
Ka Up C/No	dB	From 3.9 to 8.9	From 3.3 to 22.1
Ka Down C/No	dB	From 7.6 to 12.0	From 4.7 to 24.0

Sizing cases

More detailed models and analysis can provide a different and more efficient performances allocation (Pwr, Gain and Gain Mask)

Communications - 15

Space Time Explorer

STE MWL Ground Terminal

Architectural design based on the ACES MWL GT with:

- modification of Ku-Band chain to Ka-Band
- Antenna Dish improvement to 2m (tracker upgrade)
- Improvement of RF power output (to 10W)

ACES GT Antenna system

Space Time Explorer

STE MWL: onboard Budgets

Mass Budget			
ITEM	MASS [g]	QTY	TOTAL
MWL EU	14000	1	14000
RF Cables	200	3	600
S-Band Array	3000	1	3000
Ka Up Array	200	1	200
Ka Down Array	200	1	200
		TOTAL (gr)	18000 + 20%

Power Budget (Without 20% Margin)		
Mode	PWR consumption	
EU + TX Off	0W	
EU + TX On	80W	

Size		
ITEM	Size	Quantity
EU	???? mm	1
S-Band Array	Ø 650mm H: 40mm	1
Ka Up/Down Array	Ø 80mm H:30mm	2

Space Time Explorer

STE Communications

TT&C

Space Time Explorer

TT&C Subsystem

- Functionality provided:
 - TC for all mission phases (4kbps)
 - TM:
 - Low rate for all mission phases (16kbps)
 - High rate for all nominal mission phases (Nadir pointing) (125kbps)
 - Classical RNG and Doppler Tracking: for all mission phases, except High-rate TM
- Assumptions:
 - Optimization for Nadir pointing attitude and near-Apogee contact
 - Commercial 13m antenna availability (G/T: 22dB/K @ S-Band)
 - 3dB WORST CASE Link Budget Margin as Goal
 - Bitrate are referred at the electrical I/F of the Transmitter
 - S/C telemetry generation rate:
 - 5kbps (Platform + P/L in standby)
 - 20kbps AVG P/L operational

Space Time Explorer

TT&C Concept

- Nominal Nadir attitude
- HEO (32200 Km semi major axes, 16h frozen orbit)
- Hi rate P/L TM only in nominal attitude
- Constraints for antenna placement due to P/L antenna priority
- Design (and operations) as simple as possible

NO IsoFlux pattern NO LGA + MGA

Optimized LGA scheme

- S-Band baseline due to low data budget, spherical coverage and operational (LEOP) requirements
- 2 LGAs (Zenith and Nadir) with X-polarization (R/LHPC)
 - Nadir antenna with higher gain (7dBi) on boresight for nominal apogee communication
- Classical Redundant transponder
 - Coherent mode available for Ranging and Doppler

Space Time Explorer

TT&C Concept

@ near-apogee: small Earth FOV (15-25°), higher FPL, long contact duration, wide G/S visibility

@ near-perigee: wither Earth FOV (130°), lower FPL, short contact duration and limited G/S visibility due to frozen orbit

High rate TM for apogee link (Nominal attitude) Low rate TM/TC for all attitude and orbit position

Low power mode for near-Perigee contact

Space Time Explorer

TT&C: Baseline Ground Station and Option

13m ESA Station Baseline

Sufficient for P/L TM Sufficient for real time S/C telemetry (assuming 5kbps) Some compression or loss of some store S/C data (assuming 5kbps consensually ~15%)

Space Time Explorer

Bitrate with baseline G/S	Mbit/orbit (CCSDS coded data)	
Bitrate (kbps)	Apogee (4h)	
16 (Low Rate TM)	230 (288 required)	
125 (High Rate TM)	1800	
4 (TC)	57	

TT&C: Baseline Ground Station and Option

15m as an option

No useful improve on uplink Higher data volume possible (or shorter communication windows required) Compression of S/C TM not required ~2 times wrt 13m antenna

Bitrate with 15m G/S	Mbit/orbit (CCSDS coded data)
Bitrate (kbps)	Apogee (4h)
16 (Low Rate TM)	460
125 (High Rate TM)	3600
4 (TC)	57

Space Time Explorer

TT&C Link Budgets

- Based on:
 - HEO 32200Km semi major-axes, minimum elevation angle 5 deg
 - -13m G/S (G/T = 22.0dBK)
 - Spherical coverage for low rate @ apogee and perigee
 - Optimized coverage for high rate @ apogee
 - Atmospheric/Ionospheric loss: 1 dB
 - Coding & modulation (concatenated RS & conv., DOQPSK)
- Data-rate of 125kbps with:
 - 7W RF transmit power
 - 5 dBi antenna gain (7dBi boresight)

Space Time Explorer

Parameter	Unit	Apogee			Peri	gee
Elev.	Deg	5	90	5	5	90
Bitrate		Hi	Hi	Low	Low	Low
TM Margin	dB	3.41	6.31	4.25	>15*	>25*

* To be reduced with low-power mode

Down Link Carrier Recovery, Up Link TC and carrier recovery, as well as RNG Margin without criticality

TT&C: LGAs

Patch antenna from SSTL (Proba1, Rosetta, Topsat...)

Antenna pattern:

- Gain at boresight: 7 dBi
- 3dB BW at +/- 30 deg
- 3 dBi at +/- 90 deg

82 x 82 x 20mm

Helix antenna from RUAG (wide heritage in space) Antenna pattern: Gain ≥ - 1 dBi for 0 ÷ +/- 90 deg

Ø 65mm H:285mm Communications - 25

Space Time Explorer

TT&C: Transponder

- Based on existing HW (SWARM)
- Marginal improvement on the RF power output (from 5W to 7W)
- Hi/Low Power mode for Apogee/Perigee
- Coherent/Non-Coherent mode
- TM: Low-rate PM/BPSK (+RNG), Hi-rate DOQPSK
- TC: PM/BPSK (+RNG)
- Main/Red: Two independent boxes

Communications - 26

Space Time Explorer

TT&C: Budgets

Mass Budget			
ITEM	MASS	QTY	TOTAL
TRSP	3500	2	7000
RF Cables	150	2	300
LGA1	100	1	100
LGA2	240	1	200
		TOTAL (gr)	7640 + 5%

Power Budget (Without 5% Margin))				
ITEM	Redundancy	PWR consumption	TOTAL	Duty cycle
Rx	Hot (x2)	6.5W	13W + 5%	100%
Tx	Cold (x1)	45W	45W + 5%	25%

Size			
ITEM	Size	Quantity	
TRSP	200x200x240mm	2	
Nadir Antenna	82x82mm H: 20mm	1	
Zenith Antenna	Ø 65mm H:285mm	1	

Space Time Explorer

Power Subsystems

Session IFP ESTEC, 16th July 2010 Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

Power System Architecture

- Study oriented toward a PROTEUS like P/F
 - Power system optimised for LEO mission (dominant kind of mission for small science P/F)
 Non Regulated Power Bus
 - STE needs closer to GTO mission
 => Non Regulated Power Bus
 However Non Regulated Power Bus can do it
 (opposite more difficult)

Space Time Explorer

Power System Architecture

- Presentation
 - PROTEUS like platform capability
 - Needs for improvements
 - Options

Space Time Explorer

P/F power system (optimised)

- PCE (SA power conditioning) 3Kg (!)
- Battery 28.4Kg
- BEU (Battery maintenance)
- DBox (AIT / launch I/F)
- Distribution boards in DHU
- PCE / BAT control software

28.4Kg 4.3Kg TBC (low) TBC (low) 0Kg

Space Time Explorer

- Battery bus architecture
 - Optimised for LEO operation
 - Available performance on 16h HEO is globally improved
 - Solar array is colder => little less power but longer life
 - Battery charge is high most of the time => more SA output power
 - If power can be a little lightened during the eclipse season
 remain efficient
- SA power and BAT charge under OBSW ctrl.
 - Power conditioning is not autonomous = important NC w.r.t. ECSS
 - Part of the cost performance of the P/F => to be accepted

Space Time Explorer

- Battery based on a s+1 redundancy principle
 - Power bus voltage is translated down by ~4V if a failure occurs in one of the battery element.
 - Theoretical => 1/9 loss in capacity + SA power output capability. In practice => as long as not failed, the battery is never fully charge (good for its life time), then loss is rather 5%.
 - Performances are given with battery failed, but larger performance is available as long as battery stands
 => bonus operations
 - => in the 16h HEO case, the bonus is specifically important w.r.t. the eclipse season

Space Time Explorer

- PROTEUS like SA baseline
 - Si cell (130um) + 100um cover glass (102s x 32p)
 EOL => ~4E14 (inc back side) ~12.5% degradation (bus level) with still some margin in voltage
- Performance available EOL for INST
 - Out of eclipse season ~540W (1 failure in EPS)
 - During the [long] eclipse season ~300W in sunlight but <250WTBC1 during the 3h eclipse itself (battery energy) if the battery has a failed element (else 300W continuous) In sunlight a peak at 540W for 1h at least is possible

(TBC¹: supposing 70% DOD is acceptable w.r.t. min reserve to yet allow a transition in SAM)

Space Time Explorer

- POWER Distribution
 - 16 Lines protected by fuses,
 - 2 dedicated to launch/survival
 - => flexible + some LCL can be accommodated in ICU
 - Regulated 28V can be provided to user that need (according heritage).

However, in case of 3h eclipse, the bus voltage will be too low for a proper (simple) converter operation. If battery is failed, it is even impossible.

=> Units that need 28V shall be OFF during about ½ orbit during the long eclipse period, or accept a transiently degraded supply voltage. More elaborate converter possible, but imply larger cost (+TRL), that likely would make the units upgrade to unregulated bus more efficient (cost)

Space Time Explorer

- Conclusion
 - PROTEUS like P/F as is a little marginal w.r.t. the initially identified need (about 600W for the instrument) to be consolidated nevertheless w.r.t. to timeline
 - Latest power budget more in line with PROTEUS like
 P/F capability, outside the eclipse season.

Space Time Explorer

POWER BUDGET

- Hypothesis is to use a PDU for adapting PF power to Instrument heritage.
 - PHARAO design for 28V regulated
 - If unit is not kept active during long eclipse season a step down regulator can be used:
 => Efficiency ~96%
 - If secondary voltage is supplied to small units as CCR, FCDP, efficiency is lower: 75% worst case
 - If units are new, or have NR bus heritage (e.g. LCT) only a protection function is necessary in the PDU: 1% loss

Space Time Explorer

POWER BUDGET

 With refined hypothesis, the budget is closer to a PROTEUS like P/F on the specific orbit of the STE mission outside the eclipse season, but not during

	Budget	Heritage	Refined Hypothesis	PDU
RF link	72W	New?	99%	0.7/3.6W
COMB	40W	New	99%	2W
Optical LO	20W	NR bus	99%	1W
PHARAO	114W	28V Reg	95%	5.7W
FCDP	8W	Secondary?	75%	2.0W
CCR	2W	Secondary?	75%	0.5W
GNSS	7W	NR bus	99%	3
LCT	160W	NR bus	99%	1.6W
ICU PDU	25W 150W	NR bus	75%	6.2W 20/23W
Total	598W	=>		468/471W

Space Time Explorer

PROTEUS like Evolution

- Little larger solar array capacity

 + AsGa 3J cells on 2x2 1.2 m² (PROTEUS like) panels (instead of 2x4 panels with standard Si cells)
- Little more capable PCE
 - + (at least) an hardware protection against battery over-/under- voltage: (ECSS requirement)

+ 3.1Kg

Space Time Explorer

PROTEUS like Evolution

- Enhanced battery capacity
 + VES140 replace VES 100 elements: +44% capacity
- DBox (umbilical IF)
 - + Modified to include a battery switch for ground operation safety (missing on present PROTEUS like P/F)

Space Time Explorer

P/F power system (optimised)

- PCE (SA power conditioning)
- Battery 37
- BEU (Battery maintenance)
- DBox (AIT / launch I/F) Distribution boards in DHU
- PCE / BAT control software
- Solar Array (2 wings)

6.1Kg (!) 37.5Kg 4.3Kg 2Kg TBC (low) 0Kg 21.5Kg

Space Time Explorer

Fixed Array Option

- Body mounted SA option has been explored
 - With drifting AN, Sun can be almost in any direction
 => solar array shall be about x5 to x6 a SADM based solution

Conclusion / Options

- Conclusion
 - PROTEUS like P/F as is a little marginal w.r.t. the identified need (at least during the eclipse season)
 - However, only simple evolutions are necessary
- Other options could be considered
 - A battery with p+1 redundancy would save SA efficiency, and work around the difficulty in supplying PHARAO at the end of the long eclipses (i.e. too low bus voltage, with a degraded battery in the s+1 redundancy case)
 - A regulated bus: this costs a large BDR (800/900W), but this safe the battery switch and the PHARAO converters in the ICU-PDU.

Space Time Explorer

Mechanisms

Internal Final Presentation ESTEC, 16th July 2010 Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

<Mechanisms> - 1

Needed Mechanisms:

- Solar Array Drive Mechanism (SADM)
- Solar Array Deployment and synchronization
- Solar Array Hold Down and Release Mechanism (HDRM)
- Antenna Hold Down and Release Mechanism (HDRM)
- Antenna deployment

Space Time Explorer

<Mechanisms> - 2

Concurrent

Design Facility

Motor	
Winding resistance	285 Ω ±5%
Number of steps per revolution of motor	360
Stabile positions (motor is unpowered)	360
SA holing torque (unpowered motor)	≥ 2.8 Nm
SA average torque(powered motor)	≥ 10.6 Nm
SA repeated peak torque (powered motor)	≥ 14.7 Nm (starting and stop)
SA momentary peak torque (powered motor)	≥ 19.6 Nm (exceptional peak torque)
Twee of the second s	20.10 /
Dimension	
External diameter	120 mm
Fixation flange diameter	140 mm
Total length (from SA interface flange to rear part)	240 mm
Mass without external leads and connectors	M ≤ 3.7 kg
Mass with external leads and connectors	M ≤ 4.4 kg

Mass = 3 kg, Power < 7W

Septa 31 is the SADM used in the Proteus-like platform

<Mechanisms> - 3

Space Time Explorer

Typical torque disturbance on S/C: Sentinel3, without micro-stepping

<Mechanisms> - 4

Typical torque disturbance on S/C (envelope)

Torque disturbance PSD requirement on S/C (SA wing mass:20 Kg; SA width: 1 m)

<Mechanisms> - 6

<Mechanisms> - 7

Specifications

Max Load Support & Release 22,000 N (5000 lb-f) Max Joint Length 8.25 cm (3.25 in) Operational Voltage 22 to 36 Vdc Minimum Operating Temp. (-85 ⁰F) -65 °C +80 °C Maximum Operating Temp.² (176 °F) Heater Resistance Mass 100 gm 53 oz) Power Consumption 12 watts @ 28 Vdc Life Cycles 60 Cycles Min.

> Non pyro HDRM Space Time Explorer

Baseline: non pyro HDRM (antenna and SA).

Alternative: Low Shock Pyro, but this requires additional mass per each item

Low Shock Pyro

Antenna deployment

SPECIFICATION	UNITS	BASIS	DATA
	lb in	Typical	12
Output Torquo:	10-111	High	24
Output Torque.	Nm	Typical	1.3
	IN-III	High	2.7
		Low	5
	lb-in	Typical	10
Holding Torque: Powered		High	13
1		Low	0.6
1	N-m T	Typical	1.1
		High	1.5
		Low	3
1	lb-in	Typical	5
Holding Torque: Unpowered		High	8
		Low	0.3
	N-m	Typical	0.6
		High	0.9
Total Assembly Weight	lb	Typical	1.1
rota / tooching weight	kg	Typical	0.5

Mass= 0.5 kg; Power < 5W

Baseline: stepper motor to deploy the antenna with a locking system (eventually optional) at the end of the travel.

Alternative: spring based mechanism (slightly lower mass) with reduced accuracy on position knowledge (locking system mandatory)

Space Time Explorer

Element 2	-				MASS [kg]		
Unit	Unit Name	Part of custom	Quantit	/ Mass per	Maturity Level	Margin	Total Mass
	Click on button above to insert	subsystem		quantity			incl. margin
	new unit			excl. margin			
1	SADM		2	3.40	Fully developed	5	7.1
2	SA hold down		8	0.20	Fully developed	5	1.7
3	Antenna hold down		1	0.20	Fully developed	5	0.2
4	antenna deployment *		- 1	0.70	Fully developed	5	0.7
5	SA deployment (and synch)		20	0.18	Fully developed	5	3.8
6			0	0.0	Fully developed	5	0.0
7			0	0.0	Fully developed	5	0.0
-	 Click on button below to insert new unit 						
S	UBSYSTEM TOTAL		5	12.9		5.0	13.5

* Includes locking system

Space Time Explorer

sa	Power E	Budget	(J
Element 2	-			
Unit	Unit Name	Part of custom	Quantity	Ppeak
	Click on button above to insert	subsystem		
	new unit			
1	SADM		2	7.0
2	SA hold down *		8	0.0
3	Antenna hold down **		1	0.0
4	antenna deployment		1	3.0
5	SA deployment (and synch)		20	0.0
6			0	
7			0	
-	Click on button below to insert new	w unit		
SL	JBSYSTEM TOTAL		5	10.0

Only peak values are indicated. No continuous usage foreseen

* 112 W for 40 s are needed only for the actuation ** 80 W for 30 s are needed only for the actuation

Space Time Explorer

Space Time Explorer

AOCS

Session 8 : IFP ESTEC, 15th July 2010 Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

General AOCS Overview

- Pointing requirements are usually driving the AOCS design, but they are not stringent on this mission (0.3 degrees APE).
- Proteus Platform has been used an <u>example</u> to show if an existing platform could satisfy the needs of the mission.
- Pointing will always be Nadir Pointing with Yaw Steering.
- Assuming the final orbit (perigee 700km altitude) : No need of drag free control system
- Values of inertia, mass, spacecraft size and solar array characteristics are important to assess disturbance torques, therefore the preliminary data used introduces big uncertainties.

Space Time Explorer

Main questions to be answered for STE mission

- Is the microvibrations environment of the wheels compatible with the PHARAO/MOLO requirements ?
- Since the orbit is not circular, magnetic field can be used at perigee but is completely useless at apogee (B field is 500x weaker at apogee than perigee) :
 - What is the strategy for wheel unloading ?
 - On which equipment shall we rely for Safe Mode ?
 - Is the magnetic field usable on STE mission and does it harm PHARAO ?
- How does the AOCS have to be tailored for STE vs typical LEO circular orbit ?

Space Time Explorer

Wheels Micro Vibrations

- Micro-vibrations of wheels are low in the frequency requested (0.01 10 Hz).
- Micro-vibrations peak is around **300 Hz** on most of the wheels.
- With dampers, a force of **0.1 N** is not exceeded in the requested frequency.
- If needed, after more precise assessment, microvibs spectrum can be decreased limiting the angular velocity (and thus the Angular Momentum domain)
- If further analysis shows that wheel use are marginal, it is therefore an option to unload before the measurements to put the wheels in a predefined angular velocity range where the micro-vibration is lowered by a factor 10 or more.
- For this spectrum, structural vibrations (Solar Arrays Driving Mechanism...) are much more a concern than the wheels.

Space Time Explorer

Current existing platforms main drawbacks : Obsolescence

- Sensors and Actuators landscape are evolving quickly and equipments used today will not be necessarily available for a launch in 2022.
- As an example, Proteus was using CCD-Based Star Trackers and Dynamically Tuned Gyros.
- The nearest solution in terms of AOCS is **Sentinel3 AOCS**, which is an updated version of PROTEUS like AOCS, due to obsolescence of several equipments.
 - Star Tracker : Sodern SED16 replaced by Sodern Hydra
 - **Gyro** : Sagem REGYS3S replaced by MEMS SELEX SiREUS
- These two equipments have also been designed for GEO environment and therefore are resistant to total dose. At AOCS level APS-based STR and MEMS gyros are much more suitable for radiations than old CCD-based STRs and fiber optics gyros.

Space Time Explorer

Main challenges vs existing platforms

- Safe mode cannot rely on MAG/MTB like most of LEO missions for angular rate determination if Safe Mode is triggered at high altitude : Gyro & THR are baselined.
- Wheels cannot be continuously damped (circular orbits) : need of unloading maneuvers (either with MTB at perigee or Thrusters)
- Star Trackers on board (no Earth Sensor) is required due to the large variation of the Earth disk over one orbit. (A 3-axis attitude sensor induces no pointing perturbation during eclipses requiring high accuracy gyro)
- Guidance laws have to be updated for HE orbits.
- Re-use improvements of Sentinel 3 (no more dynamically tuned gyros but MEMS, and not a CCD based but APS Hydra Star Tracker) – All TRL between 7 and 9
 - 8 Sun Sensors from 2 MEMS Rate Sensors Multiple Head Star Tracker,
 - 4 Reaction wheels,
 - Magnetometers and Magnetotorquers (TBC)

Space Time Explorer

Wheel sizing (1/2)

- Control torques for Nadir Pointing & Yaw Steering :
 - Max value of 0.01 Nm on Z axis at perigee.
 - A peak of 4 Nms is reached but is cyclic.

Wheel sizing (2/2)

- Integration of external disturbance torques over 1 orbit:
 - Gravity gradient : Less than 0.5 Nms
 - Air Drag : Negligeable
 - Magnetic Torque (residual dipole of 5 Am² per axis) : Less than 0.5 Nms per orbit.
 - Solar Pressure : Hard to assess at this stage 2 Nms
- Conclusion :
 - With Margin, re-use of Sentinel 3 wheels.
 - At perigee, 0.2 Nm torque to allow both unloading & control of the pointing,
 - A total of 20 Nms is enough with margin (max expected at 7 Nms per orbit and 2 to be unloaded)
 - To be refined with up-to-date inertia and mass figures.

Space Time Explorer

Wheel unloading : Solution 1

- Use of the thrusters <u>anywhere on the orbit (ex: medium altitude when PL is not used)</u>
 - If 2 Nms have to be unloaded per orbit :
 - Taking into accound a SVM of 1.15 x 1.15 x 1.35 m
 Max lever arm is 0.575 m
 - To unload 2 Nms on 1 axis, 2 thrusters have to be fired 1.74 sec per orbit.
 - To unload 2 Nms on 3 axis, 3 thrusters have to be fired 3.48 sec per orbit
 - Over 1 year, fuel consumption is 2.1 kg
 - If the pointing has to be maintained during unloading and if this unloading has to be precise,
 - 20 pulses per maneuver are foreseen, leading to 10 000 pulses / year / thrusters.
 - <u>If not</u> (our case), the best strategy is to unload every 2 orbits with 2 pulses centered during the wheel torque command (equivalent to 1 pulse per orbit) : i.e. **1000 pulses / year / thruster**

Space Time Explorer

Wheel unloading : Solution 2

- Magneto-torquer bars <u>at perigee only</u>
 - Magnetic field is very weak at high altitude, therefore the bars can be used at perigee only.
 - 3 Options have been studied to perform Wheel Unloading :
 - **O1**: 2 hours continuously at perigee (1 hour before, one after) from 15 000 km altitude to 700 km.
 - **O2** : 2 hours but avoiding 1000 s at perigee
 - **O3** : 2 hours but avoiding 2000 s at perigee
 - The figure shows option 2 :
 - In green, when unloading is authorized,
 - In black, when unloading is forbidden (1000s)

Space Time Explorer

Wheel unloading : Solution 2

- Magneto-torquer bars <u>at perigee</u> (continued)
 - O2 allows to unload 64 % of O1 (but 86% of the time)
 - O3 allows to unload 17 % of O1 (but 72% of the time)
- Target unloading is 2 Nms per day (with different bars dipole values)
 - Minimal distance of the MTB from PHARAO is computed to avoid a B field of 10⁻⁵ T (140 dBpT specification) in both OFF and ON conditions.
 - According to the current accommodation, PHARAO is 1434 mm far from SVM baseplate, therefore only the 40 Am² configuration would allow its use ON during measurements. (due to the MTB on Z axis)

		Capability to unload at perigee (2 hours)			Position on the	S/C vs PHARAO
Dipole	Residual Dipole while OFF	All the time	Avoid central 1000s window	Avoid central 2000s window	Min distance (OFF)	Min distance (ON)
Am ²	Am²	Nms	Nms	Nms	mm	mm
250 Am ²	1.8	12.29	7.93	2.09	330	1700
70 Am ²	0.5	3.44	2.22	0.58	215	1100
40 Am ²	0.3	1.96	1.26	0.33	180	930
			1.20	0.00		

Space Time Explorer

Wheel unloading : Recommendation

- The choice to use MTB is not straight forward in a mass optimization point of view (<u>if</u> <u>they can not be used during the whole perigee passage</u>) : to be refined in Phase A with a precise momentum build up.
 - Overall mass with 3x250 Am² : 4.7 x 3 = 14.1 kg
 - Overall mass with $3x70 \text{ Am}^2$: 1.9 x 3 = 5.7 kg
 - Overall mass with $3x40 \text{ Am}^2$: $1.4 \times 3 = 4.2 \text{ kg}$
- The 40 Am² MTB can be placed far enough from PHARAO (1 meter), and can be used for the whole perigee phase (with no margin)
- The two unloading possibilities can be accommodated on the S/C to extend the life duration or to mitigate higher fuel consumption if disturbances or inertia increase after future refinement of the mission.
- For now, the baseline is to use thrusters for wheel unloading.

Space Time Explorer

Short Summary of AOCS modes

• Safe : SAM

- Safe Mode (After separation and in case of recovery)
- Put the spacecraft in a safe configuration, pointing the sun.

• Maneuver Mode : OCM Mode

- Orbit Control Mode (use of thrusters for orbit correction)

Transition Mode : TRM Mode

- Transition from Sun Pointing to Nominal Pointing

• Nominal Mode

- Nadir Pointing with Yaw Steering
- Wheel Unloading on Magneto-torquers or Thrusters (2 possibilities)

Space Time Explorer

Spacecraft AOCS modes & equipments

		SAM	ОСМ	TRM	NOM	Comments
	Magnetometers				1 / 2	
	Star Tracker OH		2/3	2/3	2/3	
Sensors	Star Tracker EU		1 / 2	1/2	1/2	
	Solar Cells	6 / 8				
Gyroscope		1 / 2	1 / 2	1/2		
	Reaction Wheels		3 / 4	3 / 4	3 / 4	Not for control during OCM
Actuators	Magneto Torquer Bars			3/3	3/3	Internally Redundant
	Thrusters	4 / 8	4 / 8	4 / 8	4 / 8	2 sets of 4 THR

Space Time Explorer

Spacecraft AOCS modes & equipments

Coarse Gyrometer - SELEX CRS	2	0.8
Star Tracker Optical Head - Sodern Hydra	3	1.3
Star Tracker Electrical Unit - Sodern Hydra	2	1.8
Sun Sensor - TNO TPD	8	0.0
Reaction Wheel - Rockwell Collins	4	8.0
Optional : Magnetometer (Lusospace)	2	0.5
Optional : Magnetotorquer	3	4.7
Overall Mass	7	56.2
Overall without MAG/MTB (Baseline)	5	41.1

• All these equipment have available back-ups, with radiation-hardening design for GEO missions.

Space Time Explorer

Conclusion

- Pointing accuracy is within reach,
- Reaction wheels can be used for the mission,
- Sentinel-3 equipments are used in baseline for power and mass budget,
- Some modification have to be implemented to existing platforms (for example Proteus) to fulfill the mission
 - Mainly in terms of sensors/actuators used in some modes (SAM cannot rely on B field),
- The spacecraft could accommodate both MTB and THR unloading sub-modes of Nominal Mode,
- MTB in OFF mode are not harming PHARAO, and 40 Am² could be accommodated far enough from PHARAO to be used during measurements,
- MTN is kept as an option in the design :
 - THR are anyway on board due to OCM needs and Safe Mode at apogee
 - Mass of MTB is not negligible if mass is a concern (vs fuel consumption)
 - If fuel consumption increases after Phase A (inertia and disturbances increase) the introduction of MTB is possible and reassuring as a risk mitigation vs fuel tank filling.

Space Time Explorer

Space Time Explorer

Propulsion

Session 8 ESTEC, 16th July 2010 Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

<Propulsion> - 1

Concurrent

Main Assumptions

- Launcher = SOYUZ
- Dry Mass = 900 kg
- Mission lifetime = 5 years
- Propellant consumption
 - Reaction Wheel Off-loading = 2 kg/year
 - 2 Safe Mode/Sun Acquisition Mode per year = 2.1 kg (whole mission)
- No propellant is required for the S/C Slew
- The thruster configuration proposed
 - 1N thrusters for the rest of the manoeuvres (4+4 thrusters)
- Geometric efficiency ~ 0.93 (@ 15 deg)

Space Time Explorer

Propellant budget

Mission Phase		Delta-V budget [m/s]	Thrust [N]	lsp [s]	Acc. Propellant consumption [kg]
Loupebor Dispersion	Init	0	0.99	221.3	0
	Fin.	6.43	0.91	219.2	2.9
Orbit Maintenance	Init	6.43	0.91	219.2	2.9
	Fin.	106.43	0.43	207.4	47.5
10 Safe Modes +	Init	132.39	0.43	207.4	47.5
10 Safe Acquisition Mode	Fin.	132.39	0.38	206.5	59.6
EC	7.5				
	67.1				

Space Time Explorer

Dry Mass budget breakdown

	Units	Model	Supplier	Unit Mass (incl. margin) [kg]	TRL
Propellant tank	1	Sea-Star	MTSP (UK)	9.0	6
Service Valves	4	3-barrier	EADS-ST (DE)	0.08	8
Pressure transducer	4	SAPT	BRADFORD (NL)	0.32	8
Propellant Filters	1	RA01809A	SOFRANCE (FR)	0.08	8
Latch Valve	2	51-166	MOOG (US)	0.38	8
Thruster Pair (1N)	4	CHT-1N	EADS-ST (DE)	0.82	8
Piping	1	ТВС	ТВС	0.94	8
Bracketing	1	ТВС	ТВС	1.82	8
TOTAL				17.5	

Space Time Explorer

Main Schematic

Space Time Explorer

Total Mass budget

	Units
Propellant	67.1
Dry Mass	17.5
N2 gas	0.7
TOTAL	85.3

Space Time Explorer

Accommodation

- Main dimensions of the MT-SP tank (1 tank needed):

- This tank is not subjected to ITAR regulations
- The internal membrane is silica-free. This prevents the risk of thruster failure for long throughputs
- TRL 6/7

- Additional panel is required for component integration
 - ~Size 400 mm \times 800 mm

Space Time Explorer

Space Time Explorer

Ground Segment and Operations

Internal Final Presentation ESTEC, 16th July 2010 Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility Ground Segment and Operations - 1

Communication Requirements

- High continuous ACES data rate is 50 kb/s, average data rate 20 kb/s.
- Standby ACES data rate is 0.5 kb/s
- Housekeeping data rate of satellite of 5 kb/s assumed (including payload standby/ housekeeping and system housekeeping)
- With full duty cycle of the ACES payload you have a downlink requirement per 16h orbit of:
 - Science: 16h * 3600 * 20 kb/s = 1150 Mb
 - HK: 16h * 3600 * 5 kb/s = 290 Mb
 - Total (10% overhead): (1150Mb + 290Mb) * 110% = 1600 Mb

Space Time Explorer

Tracking Requirements

- 2m orbit accuracy all directions requirement for science
- Standard accuracy is sufficient for orbit control, but much less accurate than required for science
- Science accuracy to be achieved by orbit model taking into account combination of measurements from:
 - GPS during perigee (below GPS/Galileo orbit)
 - GPS during whole orbit as growth option (not baseline)
 - MWL Doppler from ground terminals
 - MWL ranging from ground terminals (needs optical ranging for calibration for high accuracy)
 - Optical ranging (weather dependent)
 - Doppler and ranging from ground stations in apogee (perigee by GPS), (only standard ranging accuracy of 1m relative, 5m absolute in line of sight during overflight, much lower accuracy for prediction for other parts of orbit)

Space Time Explorer

Choice of Ground Stations

Tradeoff between S/X and X-band and 15m/35m stations

	15m st	ation	35m station		
	S-band	X-band	S-band	X-band	
Data rate	On board design readily available, 1 Msymbol/s gives ~ 500 kb/s	Feasible, but less station choice and no simple on board design	Only one station (NNO), max data rate (~ 5 Mb/s) limited by bandwidth	No simple on board design, Bandwidth (10 MHz) allows ~ 8Mb/s	
Tracking accuracy	Standard accuracy (~1 to 2m ranging curacy residual, 5 to 10m absolute accuracy) c Do		Troposphere calibration and Doppler as for X- band	Reuse of Bepi Colombo radio science designs, possible: Adev ~ 10 ⁻¹⁴ Doppler, 15 cm range	
	ESA standard rang 750 ksyn => serial operation o	ing not compatible w nbols/s (~300 kb/s in f high rate communic	ith symbol rates > fo rate) cations and ranging	X-band Wide Bandwidth Ranging System still bandwidth limited and needs development	

Space Time Explorer

Choice of Ground Stations: Tracking

- State of the art deep space tracking techniques can be used also for STE orbit. Those could be made available in X-band at the deep space stations (except for inonosphere which requires dual band).
- Media calibration for long apogee passes can also make use of GPS media correction service.
- Orbit accuracies based on (improved) ground station measurements can be improved by post processing and averaging over many orbits. Still improvement by more than factor of 10 compared to Lisa Pathfinder results is unlikely.
- Even best modeling based on improved ground station measurements alone falls short of requirement by a factor of ~ 2.5. (TBC, precise value would need study.)

Space Time Explorer

Choice of Ground Stations: Tracking

- Additional orbit measurements are required and are feasible (with the payload and GPS).
- With additional measurements (GPS, MWL etc.) the gain from ground station tracking improvements on the overall orbit accuracy is no longer a driver (still nice to have Doppler from ground station at apogee).
- ⇒Select ground station for communications, (use tracking capabilities at apogee as is, but with GPS assisted media compensation)

Space Time Explorer

Tracking

- Orbit determination for science should not be an operational service
- ESOC offers a Flight Dynamics staff (1 manyear/year equivalent) to provide the orbit determination for STE science:
 - Full access to ESOC tools, data and expertise
 - Under science contract, can be adapted to needs, provides flexibility
 - Non operational service can provide high performance at much lower cost than operational guaranteed service
 - Service is offered as option (science is free to seek support elsewhere)

Space Time Explorer

Choice of Ground Stations

- 1.6 Gb downlink requirement can be easily met with 15 m ground station and 2h of 0.5 Mb/s link:
 - 2 * 3600s * 0.5 Mb/s = 3600 Mb (1600 Mb requirement)
- With same on board equipment no improvement with 35m ground station.
- Anyway limited theoretical improvement with 35m station due to narrow bandwidth limit.
- \Rightarrow 15m ground station is selected as baseline
- S-band gives more choice for number of 15m ground stations
- S-band on board equipment readily available
- => S-band is selected as baseline

Space Time Explorer

Choice of Ground Stations

- 15m stations are phased out from ESA ESTRACK network
- Respective service will still be available to ESA missions (but bought from outside, sufficient capacity available, transparently to the mission)
- Some of the (ex-) ESA 15m stations will be taken over by private companies, which ones is TBD
- Problem: Most other commercial S-band stations are smaller and have a (slightly) higher system temperature. Typical are 13m stations with G/T of 22 to 23 dB/K (ESTRACK 15m stations 27.5 to 29 dB/K).
- Performance difference is ~ 6 dB

Space Time Explorer
Choice of Ground Stations

Communications Baseline

- Make mission design compatible with commercial 13m S-band stations.
 - 125 kb/s and 4 h passes per orbit in apogee
 - (4 * 3600s * 0.125Mb/s = 1800 Mb/orbit (1600Mb/orbit requirement)
 - Parallel ranging TBC
- Keep high data rate option (0.5 Mb/s) on board for optimum compatibility with 15m (ex-) ESTRACK stations
 - 2h/orbit communications
 - Serial ranging and high data rate communications

Space Time Explorer

Communications - 10

Space Time Explorer

Radiation

IFP ESTEC, 16th July 2010 Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

<Domain name> - 1

Concurrent

Radiation

Radiation effect	Parameter
Electronic component and material degradation	Total ionizing dose.
Material (bulk damage), CCD, sensor and opto- electronic component degradation	Non-ionizing dose (NIEL).
Solar cell degradation (power output)	NIEL & equivalent fluence.
Single-event upset (SEU), latch-up, etc.	LET spectra (ions); proton energy spectra; explicit SEU/SEL rate of devices.
Sensor interference (background signals)	Flux above above energy threshold and/or flux threshold; explicit background rate.

Space Time Explorer

Radiation

- Predictions of the radiation environment:
 - Total ionising dose
 - Equivalent fluences for solar cell degradation (GaAs cells assumed)
 - Non-ionising dose for displacement damage
- Simulation using the SPENVIS tool
- Models applied: AE8,AP8, ESP (w. 90% confidence, worst case w.r.t. solar cycle), SHIELDOSE-2, EQFRUX
- Orbits:
 - Highly elliptical, perigee 700km, inclination 63.4deg, orbital period 16h, but sensitive to raan/argper, which will drift during mission
 - For comparison HEO 12h, 24h, ISS, GEO, L2
- Mission duration 5years assumed

Space Time Explorer

Radiation total ionising dose

Observations:

- 12h orbit seem comparable to GEO, 24h orbit seem comparable to ISS with 16h orbit in between
- But because high inclination HEO, dose very dependent on raan/argper initial orbital parameters of reference orbit give values close to GEO will drift more detailed analysis needed

Space Time Explorer

Radiation Equivalent fluences for GaAs solar cell degradation

• Observation - similar to the ionising dose, but in general less dependency on orbit

Space Time Explorer

Radiation non-ionising dose

Observation: 12h orbit stands out as worse than the other, but in general less sensitivity to the orbit

Space Time Explorer

Mitigation measures

- General:
 - Shielding
 - Radiation hardness of components
 - Operational measures (pointing etc.)
- STE mission
 - Equipment designed for GEO can be used as is
 - Equipment designed for ISS and used in a configuration with no margin w.r.t. shielding will require additional shielding (~3mmAl)

Space Time Explorer

Data Handling System

IFP

ESTEC, 16th July 2010 Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

DHS - 1

Trade-offs (1)

Trade-offs (1)

- Pros •
 - Independency _

Space Time Explorer

- Interfaces to the S/C DHS are clear and super _ simple
 - Can benefit from heritage in previous projects (TRL)
 - Can benefit from generic platforms (e.g. PROTEUS like)
- Simplifies programmatics and AIT activities _
- Mass memory is provided by the instrument _ computer (XPLC)
- Cons •
 - Mass and power budgets increase (not significantly) _
 - XPLC and PDU to be modified and integrate the ICU
 - Heritage from previous units

DHS - 3

. Modify XPLC and PDU

Trade-offs (2)

• SVM DHS controls and interface directly to the instruments

Trade-offs (2)

Pros ٠ - Slightly mass and power budgets reduction - No payload modification (XPLC and PDU not used) Cons • - Interfaces to the S/C DHS are more complicated and Ad-hoc • More difficult to benefit from heritage in previous projects • Generic platform might not be an option anymore • Mass memory needs to be provided by the S/C DHS plus the interface to it - Platform change may have an impact SVM

Space Time Explorer

s (no XPLC/PDU)

DHS - 5

Baseline Architecture

Memory Storage

- Data rates
 - Baseline assumes the Payload to stores all scientific data (ICU)
 - DHS only allocates memory for housekeeping
 - HK data rate ~5 Kbps
 - Some Scientific data to be transmitted via the SVM
 - 20 Kbps average
 - 70 Kbps peak
 - MIL-STD-1553 provides 1 Mbps link (~800 Kbps considering protocol overhead)
 - No need for high speed data link
- Memory Storage
 - ICU memory storage for 7 days 44 Gbits EoL

Having high speed data link would have no impact in the ICU/XPLC and/or DHS design

Space Time Explorer

DHS - 7

SVM/DHS Baseline Architecture Summary

Onboard Processor Board

x2

122

• LEON2/3 based computer cold redundancy

• MIL-STD-1553 nominal/redundant

x1

CMDS – Command & Management Data System

er (W)

- MMU: Up to 2000 Gbit EoL
- Mass: 7.7 Kg
- Peak Power: 29.3 [W]

				Low Power: 20.63 [W]Safe Mode: 10 [W]				
x2	• TM/ • TM/ • Rec	TC interfaces (redundant)	STE On Board Computer Avionics w/o Margin	Boards 9	Mass/unit (Kg)	Mass (Kg) 7.70 [kg]	Low Power (W) 20.63 [W]	High Power (W 29.38 [W]
x1	Memo • FLA • Cont	bry Board SH, PROM and EEPROM troller	TTRM I/O Board MMU (FLASH board) DC/DC Housing	2 2 1 2 -	0.40 0.60 0.50 0.80	1.40 0.80 1.20 0.50 1.60 2.20	2.00 8.00 0.50 4.13	3.00 8.00 2.50 5.88
	• Inter • Hot/	C Board nally redundant cold redundancy	with 10% Margin	-		8.47 [kg]	22.69 [W]	<u>32.31 [W]</u>
Back Space Til	kplane me Explorer	Chassis	Friday				DH	S-8

Space Time Explorer

DHS - 9

Space Time Explorer

DHS - 10

DHS - 12

PLM/ICU Design

Summary

- Strong heritage in both SVM and PLM avionics
- ICU
 - Instrument computer
 - Secondary power distribution to instrument
 - Power budgets need to be further revised with last update figures from ACES
 - ICU design regarding the secondary power lines to be provided needs to be revised when details about the secondary voltage lines are provided
 - No concerns about TRL level

	PLM ICU	SVM DHS
Mass	14 [Kg]	8 [Kg]
Peak Power	131 [W]	29 [W]
Low Power	41 [W]	21 [W]
Safe Mode	10 [W]	10 [W]
TRL	6-7	7-9

Space Time Explorer

DHS - 14

Programmatics / AIV

Session 8 / IFP ESTEC, 16th July 2010 Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

Programmatics / AIV - 1

Concurrent

Requirements & Design Drivers

- High Technology Readiness Level (TRL > 5 at the end of Phase A/B1, ~mid 2014)
- Low development risk in phase B2/C/D
- Compatibility with a medium class launcher (Soyuz)
- Cost at completion for ESA < 470 MEUR (2010)
- Launch at end 2022
- Number of microwave ground terminals 6
- Microvibration requirements
- Thermal stability requirements

Space Time Explorer

Payload

- Payload computer
- MW (microwave) clock on board (same as PHARAO on ACES)¹⁾
- MOLO (microwave local oscillator => frequency output)
- FCDP (frequency comparison and distribution package¹⁾
- MWL (microwave link)¹⁾
- GNSS receiver¹⁾
- LCT (laser communication terminal)
- 1 Corner cube
- Ka and S band antennas
- PDMU (power distribution and management unit)
 - 1) heritage from ACES

Space Time Explorer

Assumptions & Trade-Offs

- Proteus-like Platform however changes are expected to be necessary
- Payload module is based on structure of existing payload modules for the same platform
- Microvibration requirements are modest due to heritage from ACES flying on ISS
- Ground terminal development and deployment is no schedule driver

Space Time Explorer

Options

A number of options have been considered:

- Smaller launcher
- Different platform
- LCT (Laser Communication Terminal) versus ELT (European Laser Timer)

Space Time Explorer

Technology Readiness Levels

11) Technology Readiness Levels – A White Paper, April 6 1995, J. C. Mankins, NASA

Space Time Explorer

Technology Development Duration

The European Space Technology Master Plan^{*}) gives the following statement:

- "It takes 12-18 months to prepare the legal bases for multi-annual programmes such as research... a political agreement on the ceiling in the financial framework should to be taken no later than 18 months before the framework enters into force.
- In order to achieve a reasonable estimation of the necessary development durations, this additional time period has to be taken into account. The following table presents an indication for the resulting development periods up to readiness for integration on a flight model.

TRL	Duration		
5-6	4 years + 1,5 year		
4-5	6 years + 1,5 year		
3-4	8 years + 1,5 year		
2-3	10 years + 1,5 year		
1-2	12 years + 1,5 year		

Development Durations for TRL's

*) Reference EUI-AH/5205, Issue 4, Revision 1, 03.11.2005

Space Time Explorer

Technology Development

Baseline

- the technology maturity of the payload to be demonstrated shall be at the appropriate technology readiness level (TRL) before being selected.
- a clear development and verification status is required and in addition the envisaged development plan

Therefore

- TRL 5-6 shall be reached at at the start of the implementation phase B2/C/D (development typically funded by R & D programmes)
- For equipment at TRL 5-6 the typical development time needed to reach TRL 8-9, i.e. readiness for integration on a spacecraft, is usually 4 years (continued development) + 1 to 1.5 years for selection, project approval etc. (typically funded by project or application programme)

Space Time Explorer

Technology Readiness (estimated)

Unit	TRL	Comments
MOLO -High finesse cavity based laser local oscillator (RL) -Frequency comb GHz reference signal (FLFC)	4	 •RL heritage from ALADIN. •Higher finesse cavity on ground but not tested in a space environment. •FLFC laboratory instrument. Some drop tower experiments. •Unit working with high finesse cavity laser and locked FLFC not proven in a relevant environment. •Optic fibers in HEO orbits to 70 000 km (radiation?)
PHARAO	5	EM available for ACES. Modifications identified previously are required
FCDP	5	Technology clear. High resolution and lower noise electronics required
MWL	6-7	No new developments assumed. Deltas needed to account for new architecture and performance requirements. Testing possibly needed.
ICU (XPLC)	7	No new developments assumed.

Space Time Explorer

Model Philosophy

- Re-using an existing platform without major structural changes should allow us to choose a PFM approach (i.e. no STM), complemented by an **Avionics Test Bench**.
- However during the study, using a Proteus like platform, it appeared that the design changes to the platform are significant, therefore building and testing an **STM** first is proposed.
- The STM should be refurbished and re-used for the **PFM**.
- All equipment shall be fully qualified at equipment or subsystem level.

Space Time Explorer

Model & Test Matrix

Test description	STM	ATB	PFM
Mech. Interface	R, T		R, T
Mass Property	Α, Τ		Т
Electrical Performance		Т	Т
Functional Test		Т	Т
Propulsion Test		Т	Т
Thruster Lifetime Test		Т	A
Deployment Test	Α, Τ		A,T
Telecom. Link	-	Т	Α, Τ
Alignment	Α, Τ		Т
Strength Load	Α, Τ		Т
Shock/Separation	Т		Т
Sine Vibration	Α, Τ		Т
Modal Survey	Α, Τ		
Acoustic	A,T		Т
Outgassing	A, I		I (T)
Thermal balance	Α, Τ		Т
Thermal vacuum	(T)		Т
Micro vibration	Α, Τ		Т
Grounding/Bonding	R, T		R, T
Radiation Testing			A
EMC cond. interf.			Т
EMC rad. interf.			Т
DC magnetic			A, T
RF testing			Т

Abbreviations: I: Inspection, A: Analysis, R: Review , T: Test

Space Time Explorer

Schedule

Space Time Explorer

Schedule

- Assuming start of the implementation phase B2/C/D in the 4th quarter in 2015 a launch in 2021 appears feasible
- However this requires the continuation of the development of technologies with low TRL (MOLO) without delay.
- The development of technologies from TRL 5-6 to flight readiness, is supposed to be done under project responsibility. If this starts only with the project implementation phase, readiness for flight integration is without much margin.

Space Time Explorer

Summary & Critical Issues

- Development and implementation of this project within the given time frame appears to be possible, with some margin
- The payload development must be continued without delay
- The re-use of the Proteus like platform might require considerable adjustments which lead to the recommendation of a model philosophy with STM, ATB and PFM
- The legal framework for the deployment of ground terminals must be prepared well in time

Space Time Explorer

Space Time Explorer

Risk

ESTEC, 16th July 2010 Session #8

Prepared by the STE / CDF* Risk Domain

Space Time Explorer

(*) ESTEC Concurrent Design Facility

Contents

- Considered Mission Constraints
- Science Objectives
- Hypotheses
- Risk Assessment Summary

Space Time Explorer

Considered Mission Constraints

- TRL > 5 by end of Definition Phase (~ mid 2014)
- Low development risk B2/C/D
- Launch by 2022
- Soyuz launch from CSG, Kourou
- ESA CaC < 470 MEUR (e.c. 2010)
- Europe Lead Mission

Space Time Explorer

Science Objectives

- Objective I : Earth gravitational redshift test inaccuracy
- Objective IIa : Sun gravitational null redshift test inaccuracy
- Objective IIb : Geopotential measurement

Space Time Explorer

Hypotheses

- Mission duration 5 years simultaneously satisfying Objectives I and II
- Science data processing assured by dedicated scientific community means & resources (not ESOC)
- Orbit determination assured by several sources GPS/Optical/MWL/TRacking
- Objective I higher priority than objective II
- Pharao not required for objective II
- New Ground Terminals can be introduced any time during the mission and provide a contribution to the mission (e.g. in the event of failure of existing terminals)

Space Time Explorer

High Risk

Technical

Low TRL of MOLO	- TDA as described				
End-to-End MWL	- End-to-End Assessment				
Lack of performance budget management	- Implement Performance Management				
Failure of PHARAO to meet obsolescence/evolution requirements	 Obsolescence management plan (also programmatic) Evolutions plan 				
Extended mission duration with respect to Payload Reliability	- Reliability Assessment Plan				

Space Time Explorer

High Risk

Programmatic

Impacts due to Overly Complex Project Organisation	-inter-agency commitments -single P/L & MWT prime -technical/science leadership for "scope creep" management
Loss of ACES Heritage technical resources and skills	-heritage technical resources and skills maintenance plan
Single Point Failures in Payload Supply Chain	 -ensure adequate planning & associated funding -accept/recognise single source for critical technologies -wave geo return obligations for critical technos

Space Time Explorer

Medium Risks

Technical

Level of definition for Ground Terminals and associated implementation plan (worldwide)	-Define concept and TDA plan is appropriate
Comms MWL P/L switching antennas TRL	-TRL demonstration
Comms MWL P/L electronics TRL	-TRL demonstration or TDA Plan
Orbit determination concept	-TRL demonstration
Justified need for Optics and associated TRL level	-Justification & TDA, if required. -Only for phase II
Potential High Delta-V requirement impacting solution	-Early Assessment Required via dedicated study

Space Time Explorer

Medium Risks

Programmatic

Ground Station/Ground terminal interfaces and	-Interface definition and concept of
worldwide coordination	operations

Space Time Explorer

Low Risks

Comms TT&C	
Comms MWL electronics S-band	
Comms MWL frequency allocation (Ka uplink, MWL S-Band & Ka dwl OK)	
Electromagnetic environment	- Assuming no Magneto Torquers
P/L FCDP Redesign	
DHS/ICU	
AOCS	
Thermal	
Vibration	
Power	
Configuration	
Structure	
Radiation Effects	- Extra shielding required
Propulsion (modifications required)	- Modified tank
Launcher & site compatibility	
Ground Operations	

Space Time Explorer

Space Time Explorer

Thermal

Session 8 - IFP ESTEC, 16th July 2010 Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

Thermal - 1

Concurrent

Orbit & attitude

- Orbit:
 - p 700 km, a 50000 km
 - Inclination 63.5°
- Attitude:
 - +X Earth Pointing, Yaw Steering

\Box

Minimum sun impingement on +/-Y walls → preferred for accommodation of radiators

Space Time Explorer

Orbit & attitude

0.100

All angles between orbital plane and Sun direction possible

"Long Eclipse" orbit case identified as the most stringent (for stability and radiator sizing)

NORTH (Z) INFRARED EMISSIVITY ("default") 0.900 0.850 Eclipse 0.800 0.750 0.700 REFERENCE 0.650 0.600 0.550 0.500 0.450 0.400 0.350 0.300 0.250 0.200 0.150

Space Time Explorer

Thermal - 3

Internal power dissipation

ltem	Nominal Mode [W]	Safe Mode [W]
PHARAO	113.5	2.5
MOLO	60	2
FCDP	8.4	0
MWL	71.5	0
LCT	(*)	(*)
GNSS	7	0
CCR	2	0
ICU	175	3.5
TOTAL	437.4	8.0

Space Time Explorer

- LCT has dedicated TCS: not considered in this study
- NM: based on peak power dissipations
- SM: conservative assumptions (data available only for Pharao/Molo; zero power dissipation assumed for all other items; ICU dissipation TBC)

Temperature limits

ltem	Operative [°C]	Not Operative [°C]
PHARAO	-10 / +31.4	-40 / +60
MOLO	N/A	N/A
FCDP	-5 / +55	-48 / +75
MWL	-20 / +55	-48 / +75
LCT	N/A	N/A
GNSS	-35 / +75	-40 / +85
CCR	N/A	N/A
ICU	-20 / +50 (*)	-48 / +75

- TCS driven by Pharao limits
- Pharao drives also the stability requirement:

Interface	Min / Max operating temperatures	Peak to peak Temperature stability			
Base Plate	10°C / 33.5°C	(3°C over 90 minutes,) ℃ over 20 days			
-X Wall	-20°C / 43 °C	No guaranteed Stability			
Multi-Layer Insulation Thermal insulation from the rest of ACES, except for UGB.					
Figure 14 · PHARAO thermal environment					

(*) given by XPLC

Space Time Explorer

Radiators sizing

Radiator area: trade-off between the need to reject excess heat in hot conditions and to limit heat leak in low dissipation modes and cold conditions

Required area: **1.315 m²** (total value for +/-Y sides)

- \rightarrow ~60% margin on available area
- \rightarrow May be allocated "horizontally" or "vertically"
- \rightarrow Room to allocate LCT radiator

Space Time Explorer

<figure>

Space Time Explorer

Results

- Radiators: 1.315 m²
- Heaters: 180 W, 77% duty cycle over orbit

- ✓ Temp limits: OK (with margins)
- ✓ Stability: OK (max 2.7°C over 90 min, may be improved)

TCS design summary

- Design based on the ACES TCS
- Payload TCS completely independent from SM; all payload heat rejection requirements met only by radiation to the environment
- <u>External</u>: MLI 20-layers aluminized (body) + silver coated FEP tape (radiators)
- <u>Internal</u>: 6 heat pipes to transfer heat from units to radiators (L-shape, 3 per side); doublers and fillers used to enhance heat transfer. Heaters with thermostatic control to stay within temperature ranges.

Space Time Explorer

Items list & mass budget

Element 1	P/L			MASS [kg]				
Unit	Unit Name	Part of subsystem	Quantity	Mass per	Maturity Level	Margin	Total Mass	
	Click on button above to insert			quantity			incl. margin	
	new unit			excl. margin				
1	MLI		1	2.243	Fully developed	5	2.355	
2	FEP tape		1	0.718	Fully developed	5	0.754	
3	Black paint		1	0.927	Fully developed	5	0.973	
4	HP		1	3.617	Fully developed	5	3.798	
5	Filler		1	0.204	Fully developed	5	0.214	
6	Doublers		1	3.564	Fully developed	5	3.742	
7	Heaters (M+R)		1	0.044	Fully developed	5	0.046	
 Click on button below to insert new unit 				0.0	To be developed	20	0.0	
S	UBSYSTEM TOTAL		7	11.32		5.0	11.88	

Space Time Explorer

Power budget

Element 1	P/L		CIFICATION PER MODE PPEAK AND POWER					NER SPE		
Unit	Unit Name	Part of subsystem	Quantity	Ppeak	SAFE	SAFE	SAFE	NM	NM	NM
	Click on button above to insert				Pon (W)	Pstby(W	Dc(%)	Pon (W)	Pstby(W	Dc(%)
	new unit))	
1	MLI		1	0.0						
2	FEP tape		1	0.0						
3	Black paint		1							
4	HP		1							
5	Filler		1							
6	Doublers		1				/			
7	Heaters (M+R)		1	180.0	(180.0		77.1	180.0		0.0
-	- Click on button below to insert new unit									
S	UBSYSTEM TOTAL		7	180.0	180.0	0.0		180.0	0.0	

- Total number of heaters: 44 (22 main lines + 22 redundant lines)
- Installed power: 180 W, duty cycle 0% in NM and 77% in SM

Space Time Explorer

Space Time Explorer

Structures Internal Final Presentation ESTEC, 16th July 2010

Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

Requirements

The structure shall fulfil the following general requirements:

- Aim for simple load paths
- Withstand the design limit loads without failing or exhibiting permanent deformations that can endanger the mission objectives
- Ensures sufficient stiffness to decouple spacecraft modes from those of the launch vehicle
- Provide support and containment for spacecraft units, equipment and subsystems

Space Time Explorer

Requirements SOYUZ launcher

- The stack (platform and P/L module) shall have a structural stiffness which ensures that the fundamental eigenfrequencies are not less than:
 - 15 Hz in lateral direction
 - 35 Hz in longitudinal direction
- Make use of standard adapter I/F
 - 45 kg Ø 937 (2100/937/750 w. cog=1.75m) or
 - 110 kg Ø1199 (2100/1199/230 w.cog =

Space Time Explorer

Structures - 3

Platform requirement

Space Time Explorer

- The platform structure must provide mechanical accommodation to all equipment supporting the bus functions of the spacecraft.
- The platform structure must ensure mechanical integrity of the spacecraft throughout all the phases (integration, transportation, Launch, orbit life).
 - The structure must provide stable geometry throughout the orbital life to ensure adequate positioning and pointing of the various sensors of the platform, as well as the payload interface

Space Time Explorer

Structures - 5

PROTEUS Platform

SATELLITE	SATELLITE JASON1 CALIPSO COROT SM Aission Ocean Altimetry: Atmosphere Astronomy Soils Moore Nadir Altimeter (clouds, aerosols): (astero- sismology, LIDAR Coron S Coron S		SMOS	JASON2	
Mission			Soils Moisture Oceans Salinity: L Band radiometer	Ocean Altimetry: Nadir Altimeter + Wide Swath	
Launch	Dec 2001	July 2005	July 2006	Sept. 2007	June 2008
Launcher	DELTA 2 dual la configuration	unch	SOYUZ	ROCKOT	DELTA 2
Cooperation	NASA/JPL	NASA/LaRC	ESA, Austria, Spain,Belgium, Brazil	ESA leadership	NASA/JPL
Orbit/ Pointing drifting 1336/66°, 705/705/SSO 896/896/90° pointing drifting 13h30 (polar) pointing : pointing : pointing : +Z nadir +X Nadir inertial, orbit yaw steering normal		756/SSO 6h pointing : +X nadir, 30° canted	1336/1336/66°, drifting pointing : +Z nadir yaw steering		
S/L mass PL mass	485 Kg 175 Kg	580kg 270kg	610 Kg 300 Kg 360 Kg		600 Kg 290 Kg
S/L power PL power	420 W 165 W	560 W 282 W	450 W 630 W 150 W 350 W		580 W 300 W

Table 1: Synthesis of the current PROTEUS missions

Space Time Explorer

Trade offs due to the tank adaptation

	units	Proteus tank	STE tank	delta	
quantity		2	1		
Diameter	mm	420	550	130	
Height	mm	485	800	315	
Dry Mass	kg	2x 3.7 = 7.4	18.1	10.7	
Wet mass	kg	2x 30 = 60	60	=	

 \odot

3	units			Ц	
ΔY (SA direction)	mm	150	150	150	
ΔX (nadir+zenith) – height	mm	315	315	0	
$\Delta m X^+_{,} X^-$ panel	kg	15%	15%	15%	
$\Delta m Y^{+}_{,} Y^{-}$ panel	kg	50%	50%	50%	
$\Delta m Z_{+,}^{+} Z^{-}$ panel	kg	50%	50%	50%	
Δm longeron	kg	31.5%	31.5%	0	
Δm bottom frame	kg	>	>	>> (thicker)	
Δm adapter ring	kg	937 → 1199	937→1199	937→1199	
∆m tank support structure	kg	>>	>	>	
Δm end fitting	kg	0	>	0	
Easy maintanenace (AIV)		©		$\overline{\mathbf{S}}$	
		<u> </u>			

Space Time Explorer

SVM mass breakdown (tbc)

	Proteus	STE-SVM
Lx	955	1150
Ly	955	1150
Lz incl. bottom frame	1000	1300 (tbc)

					-			-	
	Nr.	Dim1	Dim2	Dim3	Dim4	area	M_struct	Unit Margin	Unit mass with margin [kq]
Item		[m]	[m]	[m]	[m]	[m2]	[ka]	[%]	[kg]
SVM - LVA I/F ring	1				0.003468		9.61	10	10.57
SVM - Closure panel	1					1.00	4.88	10	5.36
SVM - webs on the closure pane	2	0.58317	0.0945			0.06	0.27	10	0.30
SVM - bottom frame	1				0.00454		12.58	10	13.83
SVM - MX panel (bottom)	1					0.80	5.24	10	5.76
SVM - PX panel (top)	1					0.80	3.88	10	4.26
SVM - longerons	8	0.0125	0.001	1			0.21	10	0.23
SVM - MY panel (SA support)	1					0.75	3.66	10	4.02
SVM - PY panel (SA support)	1					0.75	3.66	10	4.02
SVM - MZ panel	1					0.78	3.78	10	4.16
SVM - PZ panel	1					0.78	3.78	10	4.16
SVM- PLM I/F	4				0.001	0.00	2.77	10	3.05
SVM - longeron end fitting	4				0.001	0.00	2.77	10	3.05
delta - SVM - MX	1	0.15	1		15%	0.12	0.79	20	0.94
delta - SVM - PX	1	0.15	1		15%	0.12	0.58	20	0.70
delta - SVM -MY	1	0.15	0.315		51.2%	0.38	1.87	20	2.25
delta - SVM -PY	1	0.15	0.315		51.2%	0.38	1.87	20	2.25
delta - SVM -MZ	1	0.315			51.2%	0.40	1.94	20	2.33
delta - SVM -PZ	1	0.315			51.2%	0.40	1.94	20	2.33
delta - longerons (x-dir)	4	1		0	31.5%		0.07	20	0.08
delta - longerons (yz-dir)	4	1		0	15%		0.03	20	0.04
delta - bottom frame	1				32%	0.000	4.06	20	4.87
tank support structure	1					0.000	10.00	20	12.00
Misc. (inserts, screw, brackets)	1				20%	0.000	19.77	20	23.73
24							118 63	13.6	134.82

Space Time Explorer

Payload I/F

Space Time Explorer

PAYLOAD ACCOMMODATION on the PLATFORM

The primary function of the platform is to provide services to the Payload and to accommodate the payload as well. Interface with the payload is provided through pods fastened to the four upper platform corners and to the payload. A simple bolted connection externally accessible ensures an easy mating of the Payload. In this way, mountability (and dismountability if needed) of the payload is feasible without opening neither the platform, nor the payload.

Thermal de-coupling between payload and platform is getting by making the pods out of titanium alloy. A provision of 11 thermal heaters lines controlled by the platform software is provided for the Payload thermal control.

PLM structure

Based on the same structural concept as the platform, a payload module can be associated to a PROTEUS like P/F.

It is realized in the same way as the platform structure with aluminum honeycomb panels mounted on a chassis.

The chassis is made of longerons connected together with corner fittings, the four bottom ones providing interface with the platform.

Space Time Explorer

PLM mass breakdown (tbc)

		Dim1	Dim2	Dim3	Dim4	M_struct		Unit Margin	margin
	Nr.						Material		
Item		[m]	[m]	[m]	[m]	[kg]		[%]	[kg]
PLM - longerons	12	0.0125	0.001	1.00		0.21	ALUMINUM	20	0.25
PLM - baseplate	1	1.15	1.15	0.06		8.72	sandwich	20	10.46
PLM - top plate	1	1.15	1.15	0.06		8.72	sandwich	20	10.46
PLM - PY plate	1	1.15	0.75	0.025		4.21	sandwich	20	5.05
PLM - MY plate	1	1.15	0.75	0.025		4.21	sandwich	20	5.05
PLM - PX plate	1	1.15	0.75	0.025		4.21	sandwich	20	5.05
PLM - MX plate	1	1.15	0.75	0.025		4.21	sandwich	20	5.05
Radiation shielding	1			0.003		23.80	ALUMINUM	20	28.55
Misc. (inserts, cleats, beackets	1				20%	8.82		20	10.59
9						69.38		20.0	83.26

	Proteus	STE-PLM
Lx	955	1150
Ly	955	1150
Lz (from IF plane)	1000	750

Space Time Explorer

Recommendation

• Structural static & dynamic analysis need to be performed to estimate adequate material needed to meet the required strength & stiffness of the launch composite

Space Time Explorer

Space Time Explorer

Configuration IFP ESTEC, 16th July 2010

Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

Configuration - 1

Requirements

- Radiator $1.315m^2$ (+ $0.57m^2 = 1.88m^2$ LCT)
- Pharao perpendicular to orbital plane
- Antenna's nadir pointing
- Centered CoG & balanced mass distribution
- Provide the required thermal environment

Space Time Explorer

Configuration - 2

STE Spacecraft

Space Time Explorer

Configuration - 5

Overall Dimensions

Space Time Explorer

onfiguration - 6ء

Launcher accommodation

- Soyuz ST Fairing
- OTS Adapter

Space Time Explorer

Configuration - 7

Notes

- Possible sharing of radiator surface
 LCT thermal interface close to radiators
- CoG assessment shows compatibility with Proteus-Like platform
- AIV/AIT friendly design

Space Time Explorer

Configuration - 8

Session 8 IFP ESTEC, 16th July 2010 Prepared by the STE / CDF* Team

Space Time Explorer

(*) ESTEC Concurrent Design Facility

<Domain name> - 1

- Orbit: 16 hours period; inclination: 63.43 deg; Perigee: 700 Km; Apogee: 50000 Km (32200 Km semi-major axis); 6 Ground stations with clocks; repeated pattern after 48 hours
- Orbit maintenance: 20 m/sec/year: strongly recommended to investigate the strategies in further detail to analyze launch date dependencies
- Soyuz: 1633 Kg allowable (ascent trajectory injecting the S/C in the right orbit (no Perigee raising maneuver))

Space Time Explorer

- Mission duration: 5 years
- Radiation: use of equipments qualified for GEO; if not, increase thickness shielding by 3 mm (done on P/L box)

Space Time Explorer

- S/C yaw steering during the orbit
- Total mass at launch (1048 Kg < 1633 Kg allowable)

Space Time Explorer

- Orbit determination: on-board GPS, On-board transponder (for ranging); Laser ranging with LRR; microwave link, optical link, Dedicated study for orbit determination to be performed but preliminary results show that we can get 2 m after 48 hours (3 orbits) with on-board GPS coupled with Batch Least Squared method
- Optical link: TRL 4
- 6 transportable telescopes in ground stations for optical link; 3 transportable atomic clocks

Space Time Explorer

- Comms: Mwl: Ka-band replaces the Ku-band (secondary allocation not acceptable because of interference)
- Link budget OK (however further optimization could be put in the design of the MwI)
- Antenna array with fixed configuration (deployable)
- Ground: Ku-band to Ka-band
- Data Handling: On-board computer for P/L and on-board computer for S/C (high TRL levels)
- Cost: main cost due to optical link, MOLO, frequency comb, laser cavity (TRL 4 => development), Pharao

Space Time Explorer

- AOCS: Reaction wheels micro-vibrations acceptable (peak at 300 Hz)
- Use of Sentinel3 AOCS
- Magneto-torquers can only be used at Perigee
- Dedicated attitude thrusters for safe mode and off-loading reactions wheels (baseline)

Space Time Explorer

- 2 Kg propellant/year for wheels off-loading (thrusters)
- Propulsion: 2x (4 1 N Thrusters)
- Ground segment: ESOC offers a Flight Dynamics staff (1 man year/year equivalent) to provide orbit determination for STE science (to be checked what cost is associated to this)
- 13 m ground stations (S band) (15 m preferred if available)

Space Time Explorer

- Power: Baseline SA: 2x2 1.2 m2 with AsGa cells
- Body-mounted SA: 6x current area
 => disregarded
- Programmatics: Micro vibrations not a heavy requirement for programmatics
- 5 years for implementation
- Deployment of ground terminals must be prepared well in time

Space Time Explorer

- Risk: low TRL of MOLO but development activities identified
- Risk: maintain ACES heritage and skills
- Risk: Extended mission duration with respect to Payload Reliability
- Risk: Lack of system performance budget management
- Thermal: Radiators: 1.315 m2 +0.57 m2 (LCT)
- 44 heaters only for safe mode

Space Time Explorer

- Structures: Support structure (truss) of propulsion tank
- Structural analysis recommended to check compliance w.r.t launcher requirements (axial, lateral frequencies)

Space Time Explorer