# A Roadmap for Fundamental Physics in Space

Prepared by the ESA-appointed Fundamental Physics Roadmap Advisory Team (FPR-AT)

26 July 2010

# **Fundamental Physics Roadmap**

The Fundamental Physics Roadmap Advisory Team (FPR-AT) has been convened by ESA in order to draw up recommendations on the scientific and technological roadmap necessary to lead Europe toward the realization of future space missions in the framework of the Cosmic Vision 2015-2025 plan in the field of fundamental physics. The scientific fields covered are:

- Tests of fundamental laws and principles;
- Detection and study of gravitational waves;
- Quantum mechanics in a clean environment;
- Cold atom physics, new frequency standards and quantum technologies;
- The fundamental physics of dark energy and dark matter;
- Space-based efforts in astroparticle physics.

The procedure followed by the Advisory Team was the following:

- A "Call for White Papers" was issued in April 2009, due at the end of May, in order to solicit inputs from the scientific community (as well as from any other interested party) on any of the elements which the FPR-AT would consider in its report.
- A series of meetings of the Advisory Team from June till December 2009, starting with a screening of the White Papers and converging towards a draft of the roadmap proposed to the whole community for discussion.
- In parallel, the roadmap effort was presented at several international conferences during the fall of 2009.
- A workshop open to everyone, held at ESTEC on January 21-22. This workshop gathered some 120 members of the community. The main issues raised by the roadmap draft document were discussed in parallel by 4 discussion groups working on a list of 24 questions proposed by the Advisory Team.
- Final meetings in person and by teleconference allowed the Advisory Team to take into account the input of the workshop and to produce the final version of the roadmap document, which follows.

# Members of the Fundamental Physics Roadmap Advisory Team

Pierre Binétruy, APC, Paris (F) [chair]
Philippe Bouyer, Institut d'Optique, Palaiseau (F)
Mike Cruise, University of Birmingham (UK)
Luciano Iess, Universita La Sapienza, Rome (I)
Gijs Nelemans, Radboud University Nijmegen (NL)
Ernst Rasel, University of Hannover (D)
Stephan Schiller, Heinrich-Heine-Universität Düsseldorf (D)
Alicia Sintes Olives, Universitat de les Illes Balears (E)
Wolfgang Schleich, Ulm University (D)
Alan Watson, Leeds (UK)
Bill Weber, Universita di Trento (I)
Peter Wolf, LNE-SYRTE, Paris (F)

#### *ESA Secretary* Luigi Cacciapuoti, (ESA-ESTEC)

### **Executive summary**

Since the days of Galileo, physics has been the science of measurement and experiment. It has reached in the last part of the XX<sup>th</sup> century unprecedented levels of refinement which have required very special conditions. Space often provides such a clean environment, whether it is for very precise measurements of time and distance, the motion of massive bodies and light propagation, for the identification of the tiny deformations of our space-time associated for example with the propagation of gravitational waves, or the clean detection of cosmic particles of high energy.

Pushing measurements to their limits, it is therefore not surprising that fundamental physics in space lies at the forefront of our knowledge and tests the two fundamental theories that are the legacy of XX<sup>th</sup> century: general relativity and quantum theory (in the form of the Standard Model for microscopic fundamental interactions). The fact that these two theories are notoriously difficult to reconcile makes this programme an even more exciting challenge. Pushing the limits of measurement also has potential for applications that benefit all fields of knowledge. In space, this leads to many new pathways: probing outer space with other messengers than light, new ways of observing planets including the Earth, navigation with unprecedented precision... It is not surprising that fundamental physics pervades all aspects of space science in ESA.

The techniques involved are necessarily associated with high technology and often extreme precision, requiring unprecedented levels of noise control. These techniques represent the path to the future and developing them will allow progress not only in the understanding of the most fundamental aspects of our environment in its smallest or largest dimensions, but also in the technologies of the future. It is this intimate connection between the most fundamental and the most technological that singles out the field of fundamental physics in space.

The team that has led the effort towards the Fundamental Physics Roadmap that follows has been attentive to this dual aspect of the field: identifying the scientific motivations that will underlie the program of the next decade but also the technological challenges that such a program will face and the technological benefits it will bring to other fields of space science.

Building up a program with the ambitious goals encompassed by modern fundamental physics is a continuous effort. It finds its roots in the past: fundamental physics, even though it is seen as a new field in space, has built up experience over the last decades. It is being developed at the present time with a rich on-going programme of approved missions (LISA PathFinder, ACES and MICROSCOPE) that need to be completed to capitalize on the enabling technologies and to produce the science that we all expect. At the same time, it is of vital importance to plan for future challenges. From this point of view, the Advisory Team recalls how central the LISA mission is to the whole programme of fundamental physics, both for the rich and wide science programme and the technological developments achieved. This emphasizes how important it is to prepare for the future with a strong technological development plan and a harmonious experimental programme.

From this perspective, the non selection of a fundamental physics mission (apart from the proposal of an instrument on a planetary mission and the inclusion of LISA as a L1 candidate) in the first call of Cosmic Vision has been a serious setback for the field. Being fully aware of the dangers of a discontinuity in the programme, the Advisory Team has considered as a high priority the enhancement of the chances of success for the next calls, particularly that for the M-missions.

Considering this situation, the Advisory Team strongly supports the concept of an M-mission with an optical clock having a frequency uncertainty of  $1 \cdot 10^{-17}$ , and including a link

allowing the comparison of such a clock to ground optical clocks at the same level of uncertainty. This would also allow comparisons of clocks on ground at the  $1 \cdot 10^{-18}$  level. Such a system would provide a highly accurate test of the structure of space-time by testing the gravitational redshift at the inaccuracy level of approximately 1 part in  $10^9$ , in addition setting a corresponding limit to a possible spatial variation of the fundamental constants. This represents at least a  $10^3$  fold improvement compared to ACES or potential future ground results. The mission may be considered with two options, a (highly elliptical) high Earth orbit or an inner solar system orbit (approaching the sun to about Mercury distance).

Considering that tests of the weak equivalence principle would provide an important step forward in testing many theories proposed beyond the Standard Model and General Relativity, the Advisory Team recommends to study M-missions reaching a sensitivity two orders of magnitude better than MICROSCOPE i.e. a level of 10<sup>-17</sup> or better. Matter wave interferometry could represent a very interesting alternative to the use of macroscopic test masses.

The Advisory Team acknowledges the strong interest in testing gravity at all scales, but considers that the complexity, cost, and technological difficulties of a mission to the outer solar system do not warrant a dedicated fundamental physics mission. Instead, the Advisory Team supports and recommends a mission to the outer solar system that combines fundamental physics and planetary science objectives. In such a mission the fundamental physics instruments are likely to impose stringent constraints on spacecraft and mission design and need to be included in the mission development at an early stage.

The rich activity in the field of space detection of high energy particles, especially in connection with the identification of dark matter, justifies a need for a new generation of space experiments. The Advisory Team is confident that the community will make the relevant proposals once all missions presently under development have been launched and have provided their first results. In the specific field of ultra-high energy cosmic rays, the Advisory Team supports the active participation of the European community in the Japanese mission JEM-EUSO on the Japanese module of the International Space Station (ISS). This is an excellent opportunity to take advantage of the possibility of detecting such cosmic rays from space.

An important part of the fundamental physics programme comprises experiments in a microgravity environment, such as in drop towers, parabolic flights, sounding rockets or the ISS. As already demonstrated by the ACES mission, the ISS has played and will continue to play a key role in the development of atomic clocks (both optical and microwave) and atom interferometry sensors. The ISS provides relatively easy access to space for the validation of instruments and for their utilization for fundamental physics tests. Therefore, the Advisory Team strongly supports the continuation of the development of the ISS missions "Space Optical Clocks" (SOC) and "Space Atom Interferometer" (SAI).

These recommendations clearly have a definite impact on the type of technologies to be developed in the short and mid term. A strong technology development program necessary for a M mission with  $10^{-17}$  space clocks should be implemented, building on existing knowledge in European research labs and industry, in particular on the ACES heritage. The team recommends concentrating on the most promising and realistic clock able to meet these performance levels based on a well proven and mature technology. Space versions of the already well established optics and laser components and subsystems should be developed first, followed by the atomics package and the frequency comb. The Team recommends in parallel advancing the technology of inertial sensors with a high bias stability at the lowest Fourier frequencies and a sensitivity better than  $10^{-11}$  m/s<sup>2</sup>/ $\sqrt{Hz}$  (atom interferometry sensors or other technology).

Finally, it is considered as very important to continue building up the fundamental physics community. This community is very diverse, originating from the fields of gravitation, astrophysics and cosmology, Earth and planetary science, high energy physics, astroparticle physics, optics, cold atoms, solid state physics. The making of this roadmap, especially the workshop held at ESA in January 2010, has contributed a better sense of community to these diverse groups, united by the same scientific goals: to use space in order to test the fundamental laws of nature and to search for its fundamental constituents.

Having a broad and vibrant community of theorists is very important for a field which lies at the frontier of knowledge. In order to reinforce this community, it is suggested to favour bridges towards the large group of high energy theorists, who share the same interest on fundamental laws and fundamental constituents. This is why the Advisory Team proposes to revive the format of the CERN-ESA-ESO workshops with a special focus on fundamental physics issues.

In a field where the development of new technologies is a key issue for going forward and promoting new mission concepts, it is important that the key players regularly discuss their strategies. These discussions must involve ESA, industry and the national agencies, but also the research institutes that possess the often very specific technical expertise required by the field. The Advisory Team suggests that yearly or biennial meetings be organized by ESA between the space agencies, research institutes and the space industries in order to monitor the progress achieved in the technological readiness of key technologies, to accelerate the necessary transfer of knowledge, and to devise common strategies for developing new technologies.

The Advisory Team acknowledges the new advisory structure of ESA, where the Fundamental Physics Advisory Group has been integrated into the already existing Physical Sciences Working Group. It is concerned about the resulting reduction in the number of fundamental physics experts, leading to a lack of the necessary breadth and depth of competence in the field, and about the resulting lack of visibility of fundamental physics within the ESA advisory structure. It stresses the importance of the connection between this renovated PSWG group and the senior advisory group SSAC. It also considers as very important for the fairness of future mission selections that there is sufficient representation of the fundamental physics community within the SSAC.

Europe is presently holding a strong position in the field of fundamental physics in space. The Advisory Team strongly believes that, if ESA, national space agencies and the entire community work together to address the recommendations proposed in the Fundamental Physics Roadmap, Europe will have a thriving fundamental physics community, contributing with the rest of the world both to the understanding of the most fundamental aspects of Nature, and to the development of very promising technologies.

# Table of content

| Fundamental Physics Roadmap                                                      | 2  |
|----------------------------------------------------------------------------------|----|
| Executive summary                                                                | 3  |
| Table of content                                                                 | 6  |
| A. Introduction                                                                  | 7  |
| A field at the crossroads of many scientific interests                           | 7  |
| New communities, new technologies                                                | 7  |
| The Cosmic Vision plan                                                           | 8  |
| B. The scientific field covered by this roadmap: present status                  | 9  |
| B-1. Overview                                                                    | 9  |
| Fundamental laws                                                                 | 9  |
| Fundamental constituents                                                         | 13 |
| B-2. Multiple connections                                                        | 15 |
| Connection to astrophysics                                                       | 15 |
| Connection to solar system science                                               | 16 |
| A potential to a wide array of applications                                      | 18 |
| B-3. A rich space program and associated experiments                             | 18 |
| Fundamental physics missions in operation or implementation phase                | 18 |
| Fundamental physics missions candidate for L1                                    | 20 |
| Other missions with instruments relevant for fundamental physics                 | 20 |
| B-4. Ground vs space: future prospects on ground versus prospective missions     | 22 |
| Clocks on ground vs clocks in space: expected developments in the next ten years | 22 |
| Auger vs EUSO: fundamental physics with ultra high energy cosmic rays            | 26 |
| Ground vs space interferometers for gravitational waves                          | 27 |
| Ground vs space for atom interferometers                                         | 28 |
| Future of astrophysics instruments with relevance for fundamental physics        | 30 |
| C. A roadmap for fundamental physics in space                                    | 31 |
| C-1. Key science objectives                                                      | 31 |
| C-2. Priorities for the space program                                            | 32 |
| Approved missions                                                                | 32 |
| Candidate missions of CV1                                                        | 32 |
| Future missions                                                                  | 32 |
| Testing general relativity using a M mission with an optical clock               | 32 |
| Equivalence principle and accelerometers                                         | 33 |
| Missions to the outer solar system                                               | 34 |
| High energy missions                                                             | 35 |
| Mission of opportunity: JEM-EUSO                                                 | 36 |
| C-3. Technology                                                                  | 36 |
| Free-falling test masses, electrostatic accelerometers and drag-free satellites  | 36 |
| Development of optical clocks for space applications                             | 39 |
| Development of optical links                                                     | 41 |
| Development plan for matter-wave interferometer                                  | 43 |
| Technology developments for ultra high energy cosmic rays                        | 46 |
| C-4. The community and its organization                                          | 46 |
| C-5. A set of recommendations                                                    | 47 |
| List of acronyms                                                                 | 50 |

# A. Introduction

#### A field at the crossroads of many scientific interests

Measuring and experimenting have been at the heart of the physics approach to understand Nature. Measurement has reached unprecedented levels of refinement, requiring very special conditions, in the last part of the XX<sup>th</sup> century. Space often provides such a clean environment, whether it is for very precise measurements of time and distance, the motion of massive bodies and light propagation, the identification of the tiny deformations of our space-time associated for example with the propagation of gravitational waves, or the clean detection of cosmic particles of high energy.

Pushing measurements to their limits, it is therefore not surprising that fundamental physics in space lies at the forefront of our knowledge and tests the two fundamental theories that are the legacy of XX<sup>th</sup> century: general relativity and quantum theory (in the form of the Standard Model for microscopic fundamental interactions). The fact that these two theories are notoriously difficult to reconcile makes this program an even more exciting challenge.

One may group the searches associated with this program under two intimately connected areas of research:

**Tests of fundamental laws**: tests of fundamental principles, in particular the equivalence principle (weak equivalence principle, local Lorentz invariance and local position invariance including constancy of constants), tests of the law of gravity at all length scales, as well as in its weak or strong regime, structure and dimensionality of space time, tests of the foundation of quantum mechanics,

**Search for fundamental constituents**: scalar fields for dark energy, particles for dark matter, fundamental strings, etc.

The field has an agenda and priorities of its own but it cannot be completely separated from astrophysics or solar system physics. We will encounter many illustrations of this in what follows, for example in the search for dark energy or dark matter, or in the study of gravity at all scales. This is a strength of the field of fundamental physics which needs to be recognized by the other fields.

Finally, one should note the rich interface with a large variety of other subjects, such as Earth observation, geodesy, and navigation. This is a very special feature of this field, which provides a complementary reason for the fundamental physics community to have access to the space program and to develop its own technology.

#### New communities, new technologies

It is important to stress that fundamental physics as a whole represents communities with recent access to space. Even though this may lead to difficulties at a time of budget constraints, it is a sign of vitality and progress that space agencies have the potential to attract new communities and make the necessary room for them. One would be worried about the future of these agencies otherwise.

These new communities bring novel and diverse technologies to space. This requires the evolution of development plans adapted to the specifics of these technologies, in particular sufficient financial and personnel investments, and a specific attention to the novelty of the requirements. It has been stressed that the technologies of fundamental physics have, despite their specific purpose, a large potential for application in very diverse fields.

Finally, even though these communities are relatively new to space, they already have some space experience: the LISA program is almost 2 decades old; T2L2 is in operation and ACES and MICROSCOPE are well advanced; and in astroparticle physics, besides PAMELA and Fermi, AMS is getting ready to be launched.

#### The Cosmic Vision plan

Europe set up in 2005 an ambitious plan for the years 2015-2025: this is the Cosmic Vision plan [*www.esa.int/esapub/br/br247/br247.pdf*]. A call has already been issued for two medium (i.e. 450M) missions, called M1 (launch in 2017) and M2 (launch in 2018), and one large (i.e. 650M) mission, called L1 (launch in 2020). The missions Solar Orbiter (M) and LISA (L) were transferred from the earlier program of ESA: LISA is a candidate for L1.

The selection process is in progress with crucial dates in early 2010 for the M missions (down selection from 6 to 3 missions: Euclid, Plato and Solar Orbiter, plus SPICA) and in 2011 for the L missions (probably down selection from 3 to 2 missions). A further call is expected to be issued in 2010 for a M mission (launch in 2022). The status of a new L mission is very unclear (L2 within Cosmic Vision or post-Cosmic Vision?). These are obviously tentative dates, subject to change as the Cosmic Vision program develops.

In the first Cosmic Vision call in 2006, fundamental physics had a disappointing outcome. Apart from the dark energy mission (now called Euclid), which has some scientific relevance to the field, and the proposal of an instrument (GAP for Gravity Advanced Package) on a planetary mission, no mission was selected in the first round (LISA, which was included later, was already in the ESA program). Inadequate technological readiness was the main reason invoked. It is clear that the importance of the next M-mission call for fundamental physics cannot be overemphasized. This document analyzes scientific priorities and enabling technologies with the purpose of proposing guidelines for future fundamental physics missions.

Given this, and the general Cosmic Vision (CV) schedule, we will define short, mid and long term as follows:

- *short term*: 2010-2011 (M call),
- mid term: 2015 (getting ready for next calls),
- *long term*: 2020 (preparing the post-CV era).

# B. The scientific field covered by this roadmap: present status

# **B-1.** Overview

The field of fundamental physics is described by two extremely successful theories developed through the XX<sup>th</sup> century: quantum mechanics and general relativity. The basic principles of quantum mechanics have been tested with great success. Together with special relativity, the quantum theory provides the framework for the Standard Model which describes successfully the electroweak and strong interactions of fundamental particles. General relativity provides a very detailed description of the gravitational interactions.

## **Fundamental laws**

Until now, there has not been any clear indication that the quantum theory or general relativity is not consistent with observational or experimental facts. But the theory encompassing both the Standard Model and general relativity is yet to be written. The clearest sign of a difficult confrontation between the two theories lies in the concept of vacuum energy, computed within the quantum theory to be many orders of magnitude larger than allowed by the constraints coming from the rate of expansion of the Universe.

Theories, which are candidates for achieving such a unification (string theory, quantum gravity, extra spatial dimensions) tend to lead to tiny violations of basic principles:

- The space-time frame is modified (quantum fuzziness, possibly extra spatial dimensions as in string and brane models): this may lead to violations of Lorentz invariance.
- Some constants of physics are found to have a dynamical origin: they tend to evolve with time which leads to violations of the equivalence principle.
- The law of gravity may be modified at some scale (from microscopic to cosmological).

In parallel, there might be good reasons to modify the theory of gravity to account for the observational facts that lead to the concepts of dark matter and dark energy. Most endeavours in this direction are plagued with difficulties, which shows that, if there is an alternative to relativity, it is probably a very special theory.

An alternative is to introduce new long range forces. There are many proposals in this direction, most of them using scalar fields. The best known examples are found among the dark energy models. When put in the context of realistic theories, these new long range forces very generally lead to violations of some laws, especially of the equivalence principle.

The equivalence principle i.e. the equality between inertial and the gravitational mass, has played an important role in the development of our understanding of gravity. It is central to general relativity and, as such, tends to be violated in many extensions of general relativity, whether they are modifications of gravity or include extra long range forces. Testing the equivalence principle and searching for its violation is therefore central to the field of fundamental physics.

The form of the equivalence principle used by Einstein has three manifestations:

i) Universality of free fall (UFF), usually referred to as the weak equivalence principle (WEP), tested by comparing the accelerations of two bodies of different composition in an external gravitational field;

- ii) Local Lorentz invariance (LLI), tested by comparing the speed of light and the limiting speed of massive test particles, by determining the Lorentz transformations, and by testing the independence from laboratory orientation and velocity;
- iii) Local position invariance (LPI), which states that the result of any non-gravitational experiment is independent of where and when it is performed; it implies the constancy of the fundamental constants of non-gravitational physics.

Many theories considered in the context of unification or of dark energy lead to timedependent constants and thus to violations of the local position invariance. This in turn leads to violations of the weak equivalence principle. The Einstein equivalence principle is the basis of metric theories of gravity, which predict a universal gravitational redshift and the universality of free fall. A stronger version of the equivalence principle (Strong Equivalence Principle) is satisfied by general relativity: it goes one step further than the Einstein equivalence principle by replacing test bodies by self-gravitating bodies and generalizing to all experiments (instead of non-gravitational experiments only).

Precision tests of the Einstein Equivalence Principle have made remarkable progress in recent years. High stability and accuracy atomic clocks in combination with time and frequency transfer links can be used to measure the effect of gravitation on time, to perform tests of the local Lorentz invariance and local position invariance. Clocks in GPS satellites have provided precision tests of LLI. The comparison of terrestrial atomic clocks based on different atoms and atomic transitions is today providing stringent tests of LPI in the Sun's gravitational field, at the same time searching for time variations of fundamental constants to unprecedented uncertainty levels and in well controlled and reproducible environments. On the other hand, the most accurate measurement of the gravitational red-shift, a consequence of metric theories of gravitation, is still based on the space to ground comparison of two hydrogen masers performed by the GP-A rocket experiment in 1976.

The ACES mission, designed to distribute a microwave cold atom clock signal with frequency instability and inaccuracy of  $1 \cdot 10^{-16}$  and to compare clocks on ground to a frequency uncertainty below  $1 \cdot 10^{-17}$ , will allow the improvement of the gravitational redshift measurement by a factor 35. In doing so, it will also perform the most precise test of LPI in the terrestrial gravitational field.

The best tests of the weak equivalence principle are today coming from laboratory experiments based on torsion balances and lunar laser ranging (LLR). For example, the best limit on the time dependence of Newton's constant comes from LLR measurements. Compared with Earth-based experiments, precision measurements in space can benefit from the advantages of a freely falling laboratory and significantly reduced contributions from seismic noise and many other sources of non-gravitational disturbances. MICROSCOPE will test the WEP to  $1 \cdot 10^{-15}$  using differential electrostatic accelerometers. Atom interferometers represent an interesting alternative that in the future could test the universality of free fall on quantum objects.

Gravity may be tested in the slow motion weak field limit, known as the post-Newtonian limit: typically for a binary system,  $\varepsilon \sim v^2/c^2 \sim G_N M/(Rc^2) \ll 1$  where v is the typical velocity of the bodies, M their mass and R their separation ( $\varepsilon \sim 10^{-9}$  for the Earth and  $10^{-6}$  for the Sun). It is traditional to perform these tests in the context of the parameterized post-Newtonian (PPN) formalism. Many alternative frameworks with qualitatively different phenomenology have been developed and tested. In the PPN formalism, departures from general relativity are parameterized by 10 parameters. The most commonly used are the Eddington parameters  $\beta$  associated with nonlinearity in the superposition law of gravity and  $\gamma$  which measures the amount of curvature produced by mass (both of them have a value equal to 1 in general relativity).

The Eddington parameter  $\gamma$  has been measured with increasing accuracy in the last decade. Standard tests are carried out either by precise astrometry measuring light deflection (as in VLBI), or by measuring the gravitational time delay and frequency shift (Shapiro effect) of light signals passing close to a gravitating mass (as in the Cassini experiment). It should be noted that the two types of measurement are complementary as the latter is dominated by the effect when the light signals pass close to the sun (grazing incidence), whilst the former is the result of averaging over all light sources and trajectories, which in the context of scale dependent gravity probes different regions. Doppler tracking of the Cassini spacecraft while on its way to Saturn gives the most stringent constraint on  $\gamma$ :  $\gamma - 1 = (2.1 \pm 2.3) \cdot 10^{-5}$ . The GAIA mission will measure light deflection and  $\gamma$  to the  $10^{-6}$  level. Similar accuracies will be attained by the mission BepiColombo to Mercury, which will also measure other PPN parameters. The availability of independent tests at the same level of accuracy is especially important if a violation is jointly detected by both experiments.

Beyond the slow motion weak field limit, one enters the regime of strong field gravity:  $\varepsilon \sim v^2/c^2 \sim G_N M/(Rc^2) \sim 1$ . The detailed study of millisecond pulsars (especially the double pulsar system J0737-3039A,B) already allows tests in this regime because the large self-gravitation of neutron stars does not influence their orbital motion: in other words, no violation of the strong equivalence principle is observed.

The detection of gravitational waves will provide key tests of gravity in the strong regime: LISA will observe physics taking place just outside the event horizon of black holes where typical velocities are of order c. The coalescence of massive black holes at cosmological distances produces a powerful burst of gravitational radiation, which LISA will be able to measure with amplitude signal-to-noise as high as several thousand. In the months prior to merger, LISA will detect the gravitational waveform due to the binary inspiral, which will allow the determination of the masses and spins of the two black holes to high accuracy. Given these physical parameters, numerical relativity will be able to predict the exact shape of the burst waveform, and this can be compared directly to the observed burst – providing an ideal test of the theory. Stellar-mass compact objects spiralling into massive black holes will provide a qualitatively different test. The compact object travels on a near-geodesic of the space time of the massive black hole, and as it spirals in, it effectively maps out the space time surrounding the black hole. For these extreme-mass-ratio inspirals (EMRIs), LISA will typically observe of order 10<sup>5</sup> cycles of inspiral waveform, all of which are emitted as the compact object spirals from 10 horizon radii down to a few horizon radii. This will allow the acquisition in a direct way of unprecedented knowledge on the structure of space time close to black hole horizons.

Experimental tests of gravity show good agreement with general relativity at scales ranging from the submillimeter scale to the size of planetary orbits but this agreement is challenged by larger-scale (galaxies, cosmology) observations. Meanwhile, most theoretical models aimed at inserting General Relativity within the quantum framework predict observable modifications at smaller and/or larger scales. The issues of dark matter, and even more so dark energy, may be a sign that we do not fully understand gravity at very large (galactic or cosmological) scales. It is thus important to explore any possible option, in particular by testing the gravitational laws at all possible distances. The largest scales reachable with controlled, man-made experiments are of the size of the solar system, and thus space probes to the outer solar system play a special role in this context.

Over the past years, a large number of theoretical frameworks that lead to a scale dependent modification of general relativity have been investigated (see Table 1). It is beyond the scope of this document to list all the corresponding predictions. It is clearly a domain where the already important theoretical effort should be pursued in order to further motivate and better focus the experimental approach.



Table 1: Gravity at all length scales (adapted from S. Turyshev, arXiv:0809.3730 [gr-qc]).

We have insisted above on tests of the laws of gravity and the search for deviations from general relativity, but the field covered by fundamental physics in space provides unique ways to test the laws of the Standard Model as well.

As an example, we may recall that the study of the propagation of ultra-high energy cosmic rays allows the probing of energy scales a few orders of magnitude beyond the most powerful accelerators (energy being measured in the centre of mass for comparison).

Another illustration is provided by the observation of cosmological backgrounds of gravitational waves. LISA may indeed turn out to be the space counterpart of the Large Hadron Collider (LHC) which has just started running at CERN. The first goal of this collider is to discover the Higgs particle, i.e. the central building block in the spontaneous symmetry breaking mechanism which lies at the heart of the Standard Model of electroweak interactions. If the corresponding phase transition is sufficiently first order (not favoured in the Standard Model but often the case in its extensions), then it is sufficiently violent to generate a characteristic background of gravitational waves. The frequencies of these waves fall precisely into the LISA window. In other words, LISA is the tool to study Terascale physics (i.e. physics in the few TeV energy range). Even if the electroweak phase transition is not sufficiently first order to generate a detectable gravitational wave background, there might be other first order phase transitions in the Terascale region. A well-known example is the phase transition associated with baryogenesis (the generation of the asymmetry between matter and antimatter in the Universe): as shown by A. Sakharov, a necessary condition for generating the asymmetry is a first order phase transition. If the corresponding energy is the Terascale, a background of gravitational waves would be observed by LISA.

Finally, astroparticle physics uses high energy cosmic particles to understand violent phenomena in the Universe. These rapidly varying phenomena are usually associated with compact objects: black holes or neutron stars. A careful analysis of phenomena associated with neutron stars allows a better understanding of the behaviour of matter at high densities. This is complementary to what can be learned at colliders using heavy ions.

Phase transitions are ubiquitous in physics. Transitions into a state of long range quantum order are also observed in condensed matter, where they have the advantage of allowing experimental studies in the laboratory. The analogy between these phase transitions and those occurring in the early universe is the basis of experimental tests of some of the field-theoretic methods used to describe the cosmological phase transitions (as well as gravitational collapse). Space provides a microgravity environment which could be useful to explore this analogy in a precise way.

Another fundamental aspect of the field that we consider here is that it provides novel and important tests of the principles of quantum mechanics. It is known that the validity of quantum laws, developed for the microscopic world, extends to the macroscopic world. Quantum interference or quantum entanglement is one example. These phenomena are specific to quantum theories and involve predictions and observations (quantum correlations over large distances, decoherence of quantum states, etc...) that are not always easily accommodated in classical theories like special and general relativity. In particular the interplay between such phenomena and gravitation is a field that has only been explored theoretically so far. The experimental investigation of quantum correlations and decoherence started in the 1970s and expanded since to experiments over ever increasing distances, the most recent one reporting the observation of quantum correlations over 144 km. Space provides a natural extension for such experiments allowing for larger distances, larger emitter/receiver velocities and most importantly for larger variations of the gravitational potentials affecting the correlated particles. The latter would allow for the first experimental investigation of the interplay between purely quantum phenomena and gravitation.

#### **Fundamental constituents**

For several decades, astronomical measurements have found discrepancies between the velocities of stars and gas in galaxies and the mass inferred from luminous matter, leading to the concept of dark matter. Rotation curves of spiral galaxies, the inferred mass-to-light ratios in dwarf galaxies and gravitational lensing are all consistent with dark matter being a new type of matter, probably consisting of weakly interacting massive particles or wimps. From Big Bang nucleosynthesis it is inferred that they cannot have a baryonic nature.

Direct detection of these particles relies on the production of wimps at colliders (LHC) or through their interaction with matter in underground experiments. Indirect detection relies on the observation of annihilation products of wimps accumulated at the centre of the Sun or at the galactic centre: depending on the mass of the wimp, the annihilation products are more or less energetic cosmic particles. Indirect detection may be undertaken on ground (high energy photons – HESS, MAGIC, CTA – or neutrinos – ANTARES, Km3Net –) or from space (INTEGRAL, PAMELA, Fermi, AMS). Recent observations by the PAMELA space mission on positron excess (as well as related data from Fermi and HESS) have initiated considerable activity to check whether this was due to some form of dark matter. This has been a very active field recently and will remain so probably for the years to come: experimental sensitivities have now reached the predictions of the majority of wimp dark matter models.

Wimps are not the only candidates for dark matter. Besides the axion field, one may also cite superweakly interacting particles (or superwimps) which are coupled to ordinary matter with a strength much smaller than the weak interaction. These particles, expected to be lighter than the wimps, can decay into ordinary matter, thus motivating new types of searches. A particular candidate of this type is provided by sterile neutrinos.

We have alluded before to the important problem of understanding why matter overwhelmingly dominates over antimatter in the observable universe. Presumably, the mechanism has to be searched for in the cosmological evolution of the Universe. It remains important however to perform as complete as possible a search for antimatter, such as AMS was designed to do.

Conversely, experimental or observational data may put constraints on the existence of hypothetical particles. For example top-down models of cosmic rays, i.e. models where ultrahigh energy cosmic rays are produced by the decay of superheavy particles, have basically been ruled out by the photon data of the Pierre Auger Observatory.

Among the fundamental particles of the microscopic quantum world some play a very central role: they are the mediators of fundamental interactions. The larger the range of the interaction, the smaller the mass of the mediator. Since many of the tests discussed above deal with long range forces of the gravitational type, it is not surprising that they may provide key information on these mediators and on their fundamental properties.

First and foremost, there is the graviton, mediator of the gravitational interaction (if gravity is indeed quantized). The discovery of classical gravitational waves does not imply the existence of the graviton but LISA observations will improve significantly on the current solar system bound:  $m_g < 4 \cdot 10^{-22} \text{ eV/c}^2$ . One method is to observe the phase delay between optical and gravitational signals for white dwarf binaries, at the moment they are eclipsing i.e. aligned along the line of sight (potentially  $m_g < 10^{-23} \text{ eV/c}^2$ ). Another test uses the phase evolution of massive black hole inspiral signals (potentially  $m_g < 10^{-25} \text{ eV/c}^2$ ).

Most models of dark energy involve a fundamental scalar field which is extremely light (typically  $10^{-33}$  eV/c<sup>2</sup>). Embedding such a field into a realistic model usually implies some level of gravitational-type coupling between this scalar field and ordinary matter, dark matter or neutrinos. The exchange of this scalar field induces a long range force ( $10^{-33}$  eV/c<sup>2</sup> corresponding to a range of the order of the size of the visible universe) which is severely constrained by the tests that were discussed earlier. Pushing further the corresponding limits may lead to a discovery of this new long range force and of its corresponding mediator.

Scalar fields are also a major ingredient of inflation models. Indeed, dark energy and inflation models are often very similar, except that the acceleration of the expansion is much stronger in the case of inflation and that it takes place at a very early stage of the cosmological expansion, instead of late times for dark energy. We take this opportunity to stress that there is a rich connection between the study of the Cosmic Microwave Background (CMB) and its fluctuations (which provide the best test to date of the concept of inflation), and fundamental physics. We will not give CMB studies the attention they deserve in this context because post-Planck missions lie outside the realm of this roadmap. We may just add that the presence of dark energy scalar fields may have a visible effect on the spectrum of CMB fluctuations.

Finally, there is the possibility of discovering fundamental objects which are not point particles but extended objects. The best known example are strings, whether cosmic strings often associated with the spontaneous breaking of some continuous symmetry or the fundamental strings of string and brane theories (even though these are microscopic strings, some are believed to reach a macroscopic, even cosmological, size). Such strings form a network, producing loops which decay by emitting gravitational waves. They can also be pinched, and produce bursts of gravitational waves localized in space and/or time (cusps, kinks). Thus the study of gravitational wave backgrounds or bursts, possible in space with LISA, may prove to be key in identifying these objects which have been searched for through lensing observations or through their effect on the cosmic microwave background.

# **B-2.** Multiple connections

#### **Connection to astrophysics**

Gravitational waves will obviously open a new and exciting window on astrophysical sources. Conversely, astrophysical observations are setting complementary limits on gravity.

Since their discovery in the 1960s pulsars, in particular pulsars in binary systems, have been used as clocks for testing general relativity. Relativistic effects on their orbits and the Shapiro delay of their signals when travelling through the potential of the companion are in agreement with the predictions of general relativity to better than 1%. Precise timing of the arrival times of pulses of an ensemble of pulsars distributed over the sky can be used to measure the displacement of the Earth due to very low frequency ( $< 10^{-5}$  Hz) gravitational waves compared to the distant pulsars in a so-called Pulsar Timing Array. This gives a promising way of detecting gravitational wave backgrounds, at frequencies somewhat smaller than LISA.

X-ray measurements of gas orbiting close to black holes can provide information about the local geometry and thus probe strong field gravity. Reflection spectra of the inner accretion disk show distorted Fe emission lines that are thought to extend to the innermost stable orbit. Their maximum redshift then depends on the size of this orbit and thus on the spin of the black hole. Reflection of X-ray flares across the accretion disk will produce additional variability in the emission lines and can be used to map the spacetime geometry, as photon paths passing close to the horizon will suffer strongly from curvature and frame dragging. The next generation X-ray mission, the International X-ray Observatory (IXO), will increase the collecting area compared to Chandra and XMM-Newton by more than a factor 10 and will be able to study several hundred local AGN in detail and study the spacetime geometry of several tens. This is somewhat complementary to what LISA can achieve, although in the case of LISA, EMRIs allow the direct mapping of the gravitational field outside the horizon of the black hole. LISA will clearly test the strong gravity regime in a more focused and definitive manner.

In the case of dark energy, there is also a rich interplay between astrophysical observations and tests of fundamental physics: astrophysical observations will probe the equation of state of dark energy and its evolution, but in the case where dark energy is dynamical (i.e. not just vacuum energy, for example a scalar field), fundamental tests will probe more deeply its dynamics and couplings. One may also note that the coalescence of massive black holes observed by LISA will provide a new type of standard candle (or siren) to study the geometry of the Universe, and in particular dark energy. If an electromagnetic signal is recorded simultaneously from the merger, precision should be similar to that from a dedicated dark energy mission, but with completely different systematic effects.

The search for a primordial background of gravitational waves, sometimes called the Holy Grail of cosmology, is also a convergence point between complementary observations: big bang nucleosynthesis puts a mild but frequency-independent constraint; the search for B polarization modes in the Cosmic Microwave Background addresses very low frequencies (below  $10^{-16}$  Hz); millisecond pulsars put the most stringent constraints at  $10^{-8}$  Hz whereas detectors of gravitational waves operate in their respective frequency windows. If the source of this primordial background is due to standard inflation, it is probable that the sensitivity of ground interferometers or even LISA will be insufficient to detect it.

Conversely, gravitational wave instruments and dark energy missions will provide a wealth of astrophysical information ranging from Galactic binaries to properties of large samples of galaxies. As concerns dark matter, we have seen above that the indirect detection of dark matter particles is attempted by looking for the signal of annihilation (i.e. energetic particles and photons). In order to reliably perform such experiments, it is crucial to carefully take into account all the possible astrophysical sources of energetic particles and photons. Recent examples have shown that this is crucial before attributing any excess to the presence of dark matter. It is probable that, in the hypothesis that dark matter is formed from wimps, its nature will be fully identified by relying both on direct and indirect detection.

Any anisotropies observed in the arrival directions of cosmic rays above ~  $4 \cdot 10^{19}$  eV (Ultra High Energy Cosmic Rays or UHECRs) lead to the prospect of using these particles for astronomical purposes. They must have been produced dominantly within a volume of radius ~ 100 Mpc defined by the distance that UHECRs can travel through the 2.7 K microwave background (the Greisen-Zatsepin-Kuzmin or GZK effect). Observations of UHECRs will provide information about nearby sources and intervening magnetic fields.

The anisotropy observed above ~  $5 \cdot 10^{19}$  eV by the Pierre Auger Collaboration appears to be associated with the nearby local matter distribution. In particular, Cen A and other nearby active galactic nuclei may be sources of UHECRs. However the rate of events is only ~ 2 per month and it is therefore impossible to construct a spectrum for individual sources, information that would provide an important clue to understanding the mechanisms of particle acceleration in the most energetic objects in the Universe. These range from compact objects to active galactic nuclei with their super-massive black holes, relativistic jets and giant radio lobes and to gamma-ray bursts. Identification of features of individual UHECR sources would enable the study of physics in extreme conditions (high magnetic field, matter density and/or gravitational field). By gaining access to the three main accessible parameters (the power imparted to UHE particles, their maximum energy, and the shape of their spectrum at the source) with sufficient statistics, the physics of the sources will be strongly constrained.

Individual sources also provide a tool to test different models of the galactic magnetic fields. Back-tracking particles through different magnetic field structures will allow the identification of those that are most effective in reducing the region on the sky from which the particles come.

Work with the Pierre Auger Observatory has shown that an instrument with a much greater aperture is required. This can come from the Japanese mission JEM-EUSO which will take forward the astrophysical connections and also meet some fundamental physics objectives.

#### Connection to solar system science

Fundamental physics in the solar system is necessarily and intimately related to solar system science. In particular, a non exhaustive list comprises lunar, planetary and solar observation, planetary missions, interplanetary spacecraft navigation, etc. Some of the best bounds on deviations from the known laws of gravity are obtained from the analysis of data from lunar and planetary observations and from planetary missions. Either those data are obtained as a routine product related to the primary goal of the observations and missions, or as the result of a dedicated experiment carried out using state-of-the-art radio or laser technology. Some of the most striking examples are:

- The current best bounds on a violation of the weak and strong equivalence principle and of any time variation of the gravitational constant obtained from 34 years of lunar laser ranging (LLR), together with the most stringent bound on the PPN parameter combination  $4\beta - \gamma - 3$ .
- The best limit on the PPN parameter  $\gamma$  from radio ranging to the Cassini spacecraft during solar occultation.

• The best upper limit on stochastic gravitational wave backgrounds in the 10<sup>-6</sup> to 10<sup>-3</sup> Hz range obtained from radio ranging to Cassini during the cruise to Saturn.

Although in many cases missions and technologies with primary goals in solar system science have been "opportunistically" used for fundamental physics (with the possible exception of LLR), the inverse may also become true in the future, where missions and technologies whose primary goals are in fundamental physics may additionally provide useful information for solar system and planetary science.

Another intimate link is provided by the necessity of using the solar system science results to correct for the "classical" effects in fundamental physics experiments, before being able to analyse the data for deviations from the known laws of physics. This requires, in particular, an accurate determination of planetary and solar ephemerides and gravitational fields, and the cancellation, or at least the strong reduction, of propagation noise due to the solar corona and the Earth's atmosphere. In addition, the use of a spacecraft as a proof mass for gravity tests requires an adequate knowledge (or estimation) of the non-gravitational accelerations and/or the adoption of drag-free systems. These aspects were crucial in all past solar system experiments in fundamental physics and will be even more important with the improved accuracy expected in future experiments.

Indeed, precise orbit determination of interplanetary spacecraft or landers is an excellent tool to test general relativity and alternate theories of gravity. Any inconsistencies in the analysis and modelling of the navigation data may be hints towards new physics and must be studied with the greatest care. Errors in the analysis and modelling of the navigation data have to be ruled out. If necessary, additional data and instruments must be used to allow further and complementary information to be obtained. This is of particular interest for missions that cover large parts of the solar system (e.g. missions to the outer planets and Kuiper belt) in the light of scale dependent gravity as discussed above. Landers may also provide excellent opportunities to improve solar system ephemerides and test deviations from the adopted dynamical laws. Being essentially immune to non-gravitational accelerations, the determination of their long-term dynamics is much easier than for an orbiting spacecraft. Range and range rate measurements of landers provide crucial information for the study of planetary interiors, and are therefore also of great interest to the planetary community.

In a more global picture, planetary spacecraft and planetary landers provide the most precise data for the construction of solar system ephemerides, which in turn provide additional tests of gravitation at precision levels comparable to those obtained from LLR and individual missions. For example, solar system ephemerides provide the best limits to Yukawa type modifications of the Newtonian gravitational potential with ranges between  $3 \cdot 10^9$  m and  $10^{15}$  m. Furthermore, the ephemerides are a crucial component of any dynamical model used in precise orbit determination. Currently available models of solar system dynamics are now limited by the poor knowledge of the masses and distribution of asteroids. Although these effects are relatively small (to the level of 10 m on the orbit of Mercury), they are likely to be among the main limitations in precise tests involving spacecraft in planetary orbits and landers. Long term observations of planetary probes and high accuracy astrometric measurements from GAIA may lead to a significant improvement in solar system ephemerides.

In the future this intimate connection between solar system science and fundamental physics is expected to further strengthen with the expected improvement of the instrumentation and the development of new high precision technologies specific to fundamental physics (accelerometers and drag free technologies, optical atomic clocks, optical links and optical interferometers). That will lead to a stronger interdependence for the interpretation and comprehension of the data, be it in planetary or fundamental physics, certainly aided by the availability of more diverse high precision measurements (local

acceleration, local time, astrometry) additional to the already available ranging and Doppler data.

#### A potential to a wide array of applications

Most of fundamental physics in the Earth's vicinity and in the solar system is concerned with a deviation from the known laws of gravitation, and thus with different types of precise measurements of the gravitational field (motion of bodies, light propagation, clocks). The precision required in fundamental physics is in general significantly better than in other applications (e.g. clocks in ACES, drag free and accelerometers in LISA PathFinder and Microscope), but once the technology is developed it also leads to significant improvements and new applications in many other fields (geodesy, planetary gravity, global positioning, altimetry, telecommunications, etc...). As an example, clocks reaching a 10<sup>-18</sup> accuracy would allow, with appropriate links, the measurement of differences of the Earth's gravitational potential with a centimetre accuracy. This is complementary to satellite measurements which achieve similar precisions, but averaged over large areas.

Often, the technology development is carried out with several applications as drivers, a good example being accelerometers and gradiometers which have found widespread use in space geodesy (CHAMP, GRACE, GOCE) and fundamental physics (Microscope, LISA PathFinder, LISA). Similarly the precise clocks and radio/optical links available on ACES will yield benefits not only for fundamental physics but also for positioning, geophysics and atmospheric studies, either with the ACES mission or in future deployment. A good current example of the synergy between Earth observation and fundamental physics is the optical link (T2L2) onboard Jason2 (launched in 2008), which allows the calibration of the onboard oscillator with respect to ground clocks, which in turn improves altimetry observations and positioning.

Quite generally, any instrument allowing significant reduction in the measurement uncertainty of the crucial observables is important for fundamental physics and other applications. Research in fundamental physics is a driver for the development of high precision instrumentation that will naturally find its way into other applications. As an example oriented towards the future, the availability of high precision space clocks points towards a long term perspective where international time scales will be constructed in space and precisely disseminated to ground. That would overcome barriers related to the terrestrial environment that are already perceptible today, and exploit novel global positioning techniques with significantly improved uncertainty over present systems (GPS, GLONASS, Galileo), which are already outstanding examples of applications of the resources of quantum mechanics and general relativity.

## B-3. A rich space program and associated experiments

We briefly describe the existing program in space, outlining only the projects with significant European participation.

#### Fundamental physics missions in operation or implementation phase

**T2L2**: Time Transfer by Laser Link (T2L2) is an optical link for clock comparisons and time transfer experiments. The package, launched on the Jason-2 satellite on June 20<sup>th</sup> 2008, uses the ultra stable oscillator in the DORIS orbit determination system as on-board frequency

reference. Over 30 ground stations are contributing to the experiment. The T2L2 package aims at demonstrating a time stability of a few ps in the comparison of distant clocks and a time accuracy of 100 ps in the distribution of time scales.

**ACES**: Atomic Clock Ensemble in Space (ACES) is a mission based on a new generation of atomic clocks to be installed on the International Space Station, at the external payload facility of the Columbus module. The on-board clock signal is generated by an active hydrogen maser (SHM) and a primary standard based on samples of laser cooled Cs atoms (PHARAO). Fractional frequency instability and inaccuracy of  $1 \cdot 10^{-16}$  will be reached by the ACES frequency reference under microgravity conditions. A high-performance link in the microwave domain will distribute on ground the ACES signal allowing clock comparisons to a frequency resolution of  $1 \cdot 10^{-17}$ .

ACES will connect ground clocks based on different atoms and atomic transitions in a worldwide network that will probe fundamental laws of physics to high accuracy. Space to ground and ground to ground comparisons of atomic frequency standards will be used to perform tests of Einstein's theory of general relativity including a precision measurement of the gravitational red-shift, a search for time variations of fundamental constants, and tests of the Standard Model Extension.

ACES will also support applications in different areas of research. The measurement of the differential redshift between clocks on ground will provide direct access to the local geopotential with a resolution down to the 10 cm level. The on-board GNSS receiver used for precise orbit determination of the ACES clocks will also support applications in GNSS remote sensing (radio-occultation and coherent reflectometry). A link in the optical domain is presently under development for clock comparisons, time transfer, and ranging experiments (optical vs. microwave).

Tests recently performed on the engineering models of key instruments and subsystems of the ACES payload have characterized the system performance releasing the manufacturing of the flight models. ACES will be ready for launch in 2013.

**MICROSCOPE**: The CNES-ESA mission Microscope will test the weak equivalence principle, with a sensitivity to a possible EP-violating relative acceleration difference of  $10^{-15}$ . The experiment, which is scheduled for launch into a polar orbit at the end of 2012, uses electrostatic position sensing to measure the differential acceleration in the Earth's gravitational field between concentric cylindrical test masses of Pt and Ti, with a second Pt-Pt pair used to discriminate systematic errors. The MICROSCOPE differential accelerometry, designed for pm/s<sup>2</sup>/Hz<sup>1/2</sup> level at 1 mHz, is based on electrostatic position sensing and force actuation, with flight heritage from the GRACE and GOCE geodesy missions, and a drag-free satellite, employing FEEP microNewton thrusters that guide the satellite to follow a free-falling test mass. In addition to being the first test of the universality of free fall to be conducted in space, Microscope represents an improvement of more than two orders of magnitude over existing torsion pendulum and lunar laser ranging equivalence principle tests.

**LISA PathFinder**:\_LISA PathFinder will probe the limits with which a macroscopic object can be placed into nearly perfect free-fall, with a measurement of the differential acceleration of two geodesic reference test masses to better than 30  $\text{fm/s}^2/\text{Hz}^{1/2}$  at 1 mHz. LISA PathFinder, scheduled for launch to L1 in 2012, represents a single arm of the LISA gravitational wave observatory that has been squeezed from 5 million km into a single spacecraft, with 30 cm baseline, with the relative test mass acceleration measured with an optical interferometer.

LISA PathFinder will test the current state-of-the-art in high purity free-fall, with hardware designed for the LISA "local measurement" of a free-falling test mass inside a coorbiting satellite. This includes a 10  $\text{pm/Hz}^{1/2}$  interferometric displacement readout, an upgraded 6 degree-of-freedom electrostatic sensor designed to reduce stray forces to the  $fN/Hz^{1/2}$  level, and a drag-free satellite with microNewton thrusters. The acceleration resolution is within a factor 10 of the final LISA goal, which would be sufficient to guarantee LISA observation of galactic compact objects and distant massive black hole sources.

In addition to a test of the LISA measurement technique, LISA PathFinder aims at an experimentally-based physical model of the limits of the free-fall, with dedicated measurements of different known force noise sources, including magnetic fields, thermal gradients, cosmic ray charging, and coupling to spacecraft motion, in addition to a global measurement of relative acceleration noise. The LISA PathFinder results will thus be applicable to a wide variety of gravitational missions requiring high precision measurement of the differential acceleration between free-falling test masses, including gravitational wave observation, geodesy, Shapiro time delay measurements, and  $1/r^2$  tests on various length scales.

#### Fundamental physics missions candidate for L1

Among the missions presently considered for L1:

**LISA**: Laser Interferometer Space Antenna (LISA) is the first planned space based gravitational wave detector and a joint project between ESA and NASA. Three spacecraft in a heliocentric orbit will use laser signals to measure changes in the 5 million km interferometer arms which separate the spacecraft. Each spacecraft will have a drag free control system onboard to enable the effects of Solar wind pressure to be eliminated in the observing band of 0.1 to 100 mHz. LISA aims at being ready for launch in 2020.

LISA will record the inspirals and mergers of massive binary black holes throughout the Universe and it will map isolated black holes with high precision. With its enormous reach in space and time, LISA will observe how massive black holes form, grow, and interact over the entire history of galaxy formation. Thus gravitational waves detected from these would provide an independent test of the scenario that galaxies have formed hierarchically. In addition they will provide very accurate mass and distance measurements, and these would contribute in a unique way to measurements of the Hubble constant and of dark energy. LISA observations of inspirals of massive black hole binaries could also constrain a variety of theories of gravity designed as extensions to general relativity.

LISA will measure the 3D positions and orbital properties of thousands of compact binary systems in the Galaxy, providing a new window on matter at the extreme endpoints of stellar evolution. In fact the LISA census of massive black holes and galactic compact binaries will basically be complete. Any merging massive black hole in the observable Universe will be detected. Above a few mHz, where the galactic binaries become individually detectable, LISA will observe all sources in the Galaxy. In addition, several LISA events will likely have electromagnetic counterparts at a wide variety of timescales and wavebands that will stimulate major new observing opportunities across the electromagnetic spectrum. It is also conceivable that LISA will discover new phenomena of nature, like phase transitions of new fields, extra dimensions or string networks produced in the early Universe.

#### Other missions with instruments relevant for fundamental physics

There are a number of instruments in operation or ready to be launched that have astrophysical goals together with the potential for producing important results in the fundamental physics area. These are described briefly below. **Pamela**: This is a free-flier on the Resurs-DK1 satellite, with Italian, Swedish and Russian involvement. It was launched in June 2006 and it main goal is to obtain state-of-the-art data on cosmic rays up to energies of about 1 TeV. High precision measurements of the electron, positron, proton, anti-proton and light nuclei (to Z = 6) and of the isotopes D and <sup>3</sup>He have been made. Of particular interest to fundamental physics have been the interpretations of data on the  $\overline{p}/p$  and  $e^+/(e^+ + e^-)$  ratios which put strong constraints on certain models of dark matter.

**Fermi**: The Fermi Gamma Ray Observatory, a NASA instrument involving European Institutions from several countries, was launched in June 2008 and is primarily designed to study gamma rays of energies above  $\sim 100$  MeV from astrophysical sources. In addition there is the possibility of finding clear evidence of dark matter particles, such as neutralinos, by detecting the gamma rays expected when two neutralinos annihilate each other. Such annihilations will occur in clumps of dark matter such as might be found at the galactic centre.

One test of fundamental physics that will be explored with Fermi is the possible dependence of the velocity of light with wavelength. Differences are expected in some models of quantum gravity which attempt to merge Einstein's general theory of relativity with quantum mechanics. Turbulence of spacetime might result in velocity differences. Another test will be made by searching for the phenomenon of photon splitting in which a high-energy photon splits into two lower energy photons in, for example, the magnetosphere of a neutron star.

**AMS-02**: The AMS-02 instrument, which has involvement from 37 institutions world-wide including some 8 in European countries, is designed to operate on the Space Station; launch is expected soon. The instrument will measure the properties of cosmic rays with an improvement of several orders of magnitude over previous work. The key element of the AMS-02 experiment is a superconducting magnet which generates in a cylindrical volume of  $0.6 \text{ m}^3$  a magnetic field of 0.9 Tesla. Inside this volume a high-precision double-sided silicon strip detector measures the trajectories of charged particles at 8 planes.

A key question to be answered is the amount of anti-helium in the cosmic ray flux. In addition the instrument will be used to search for objects weighing 10-100 times as much as a carbon nucleus, carrying less than 1/2 or 1/3 of the expected charge, 'strange quark matter or strangelets'.

AMS-02 also has the potential to study the positron to electron ratio, as in Pamela but with higher statistics, to search for cold dark matter.

**GAIA**: The mission GAIA (Global Astrometric Interferometer for Astrophysics), to be launched in 2011 and placed in the L2 Lagrange point of the Earth-Moon system, will carry out astrometric, photometric and spectroscopic measurements of celestial objects down to magnitude V=20. The core instrument is an optical interferometer built around two 1.45 x 0.50 m telescopes, capable of an end-of-life positional accuracy of 24 microarcseconds for stars of magnitude 15. In its five year nominal mission, the instrument will measure many times the positions of more than 10<sup>9</sup> objects.

The extremely precise determination of the angular positions requires precise modelling of the light deflection from the sun and the planets. Rather than assuming  $\gamma=1$  as in general relativity, GAIA will be able to determine that parameter to an accuracy of about  $2 \cdot 10^{-6}$  or better, thus providing an improvement by a factor of 10 over the Cassini determination. In addition, GAIA will be able to determine other PPN parameters (such as  $\beta$ ) by optical tracking of asteroids with pericenters in the inner solar system. A specific experiment is also designed to determine the light deflection by Jupiter to evidence non radial deflection caused by its quadrupolar moment.

**BepiColombo**: Significant improvements in classical tests of GR will be possible with the mission BepiColombo to Mercury. The spacecraft, to be inserted in a low altitude polar orbit, is endowed with an advanced radio system providing range and range rate measurements, respectively to 0.1 m (after a few seconds integration) and 2 10<sup>-6</sup> m/s at 1000 s integration time. In addition, an accelerometer will measure the spacecraft non-gravitational accelerations. This combination of instruments will provide Mercury's orbit in the solar system to 10 m or better, making possible a new determination of the PPN parameters  $\beta$ ,  $\eta$ ,  $\alpha_1$ ,  $\alpha_2$ , a dynamical determination of the solar J2 and a test of the constancy of G<sub>N</sub>. Data acquired across solar conjunctions (both in cruise and the planetary phase) will provide also an improved determination of  $\gamma$ , to a level of 2·10<sup>-6</sup>.

# *B-4.* Ground vs space: future prospects on ground versus prospective missions.

There are clear advantages to go into space: a low Newtonian noise, free fall, long distances, large gravitational potential differences, large velocities. But there are also major drawbacks, the main ones being the cost of space missions and the time it takes to fully develop a mission up to the launch (some ten years in the case of the M-missions considered in CV1).

It is thus very important to assess what can be achieved on ground in the next ten years and compare it with what will be achieved in space with technologies which will be frozen at least 5 years earlier. In the following, we review a certain number of cases where this question plays an important role.

# Clocks on ground vs clocks in space: expected developments in the next ten years

#### Atomic clocks on ground

As already stressed in Section B.1, the test of the time invariance of fundamental constants is a test of local position invariance. It makes use of the transition frequencies between energy levels of atoms or molecules, which depend in different ways on the fundamental constants such as the fine structure constant  $\alpha$ , the electron-to-proton mass ratio, the g-factors of the electron and nucleons, etc. The time-invariance of fundamental constants is best tested by comparing two closely located atomic/molecular clocks, i.e. measuring their frequency ratio. The close location permits keeping the height difference between the two clocks small and thereby performing an accurate correction for the time variation of the differential gravitational redshift due to the Earth. There is no immediate motivation for performing this type of test in space, except that in the more distant future, when clock performance beyond  $10^{-18}$  will be the goal, today's methods for trapping particles may turn out to be inadequate because of too strong perturbations. However, weakening the trapping strength will eventually conflict with the need to prevent the particles from falling. Then, operating in space may be a solution.

#### Test of Local Position Invariance

In the gravitational field of the Sun, terrestrial clocks experience the gravitational potential  $U_S$ , which is time-varying due to the orbital motion r(t) of the Earth. If local position invariance is violated, a relative frequency change of two dissimilar clocks occurs, proportional to  $c^{-2} U_S \Delta r(t)/r$ . This quantity varies by  $3 \cdot 10^{-10}$  over the course of a year. A time dependence correlated with r(t) would lead to an additional signal in a clock comparison

which can be distinguished from a hypothetical signal by a time dependence of the fundamental constants due to the latter assumed linear time dependence.

In more general terms, tests with clocks at varying distance from a massive body can be interpreted as searches for a variation of fundamental constants with ambient gravitational field, related to a coupling of matter to additional scalar fields whose source is the massive body. A co-located clock test in the gravitational field of the Earth differs in principle from an analogous one in the gravitational field of the Sun because the matter composition of Earth (mostly heavy elements with an important mass fraction stemming from neutrons) and Sun (mostly protons) differ significantly. Assuming that a dissimilar clock pair can be compared at two locations with a maximum height difference on the order 4 km (bottom and top of a tall mountain), the maximum relative effect is proportional to  $4 \cdot 10^{-13}$ . Dedicated measurement campaigns of this type have not yet been performed with clocks, but, in the course of terrestrial clock development, co-located clock comparison tests will naturally take place, as the developing labs happen to be at different height,

#### Measurement of the gravitational redshift in the Earth field

Assuming that on the 10 year timescale one terrestrial clock type reaches inaccuracies of  $1 \cdot 10^{-18}$ , and assuming the comparison of two such clocks located at the bottom and top of a mountain with 4 km height difference is possible (which is feasible using current optical fiber link technology), this would give a relative redshift resolution of  $2 \cdot 10^{-6}$ . This is similar to the goal of the ACES mission (based on a clock with  $(1-2) \cdot 10^{-16}$  inaccuracy). The gravitational potential difference would have to be measured with the same resolution by a chain of gravimetric measurements where distance measurements with millimetric accuracy and state of the art gravimetry must be employed.

#### Atomic clocks in space

On the timescale of 10 years, it seems feasible to develop flight models of optical clocks with  $1 \cdot 10^{-17}$  inaccuracy, ten times better than ACES. At the time of flight, terrestrial clocks may have reached a performance ten times better.

Spacecraft offer first of all large travel distances, which implies probing the gravitational field over larger distances, where the radius vector to a second clock can be oriented in different directions, as well as grazing paths around massive bodies. Three qualitative options, with increasing complexity and cost, are available: a low-altitude Earth orbit provided by the ISS or a dedicated satellite, a high Earth orbit, or an interplanetary mission. In the first two, the variation of Earth gravitational potential with respect to the Earth's surface is about two or three orders larger compared to a terrestrial experiment. For a test in the Sun's gravitational field using a planetary or solar mission the gain is between  $2 \cdot 10^4$  and  $1 \cdot 10^6$ .

#### Gravitational redshift

The Earth's gravitational redshift measurement could be performed with a 10 to 100-fold improvement compared to ACES for a near-Earth and high altitude orbit, respectively.

A variation on this theme consists in making use of the high stability of optical clocks and a "modulated" orbit, in particular a highly elliptical one. The relevant potential difference is then not between space and ground but between points on the orbit, which simplifies the gravitational potential metrology. A large number of orbits enables statistical averaging and a further gain in precision by a factor of 10 seems possible.

The Sun's gravitational field redshift can be determined very accurately with an interplanetary mission, thanks to the large potential difference between the clock on the spacecraft and a terrestrial clock. The improvement associated with the measurement will be huge: for a clock with  $10^{-17}$  uncertainty at Mercury, an improvement of more than  $10^4$  compared to the expected ACES results would be achieved. The metrology of the

gravitational potential with corresponding accuracy will require determining spacecraft-Sun and Earth-Sun distances at the meter and ten-meter level, respectively.

#### Test of Local Position Invariance (LPI)

As for an Earth gravitational redshift measurement also an Earth field-LPI test could be performed with a 10 to 1000-fold improvement compared to ACES for a low-Earth and high altitude elliptical orbit, respectively. It would necessitate two dissimilar clocks on the spacecraft.

A Sun-field LPI test with a spacecraft going close to the sun could take advantage of a very large gravitational potential (US mission proposal SpaceTime). Equipped with dissimilar optical clocks, the resolution of an LPI test would be outstanding, with an improvement of 100 compared to terrestrial measurements and in addition searching for effects to second-order in the gravitational potential.

#### Scale dependent gravity

Depending on the theoretical model used, a scale dependence of gravity will have different effects on the motion of massive test bodies, the propagation of light and the behavior of clocks (gravitational redshift). Therefore the observation of the motion of satellites and the evolution of onboard clocks via a microwave or optical link (light propagation) is sensitive to all three effects and thus allows the most complete characterisation of gravity and its variation with distance from the gravitating body. Ideally such observations should span the maximum possible range of distances, i.e. a mission to the outer solar system would provide a significantly larger range than going towards the sun. However, even at smaller distances the additional observable provided by an onboard clock could be useful, as it will provide additional information towards separating fundamental physics effects from modelling errors and other systematic effects.

### Test of light propagation (Shapiro time delay, light deflection)

A precision measurement of the gravitational delay requires a transponder or a clock on the opposite side of the sun from the observing station (Earth or second spacecraft) with a radio or optical link between the two at close (grazing) incidence to the sun during a conjunction. Using an optical link and an optical transponder (or clock) onboard a solar system orbit spacecraft during a solar conjunction, a measurement at the  $10^{-7}$  level when using ground clocks or  $10^{-8}$  level when using a clock on a second spacecraft seems feasible.

The following Table 2 summarizes the improvement factors expected with  $10^{-17}$  clocks in space, in comparison with other planned or potential experiments. We consider a scenario in which ground clocks gradually improve to the  $1 \cdot 10^{-18}$  inaccuracy level over the next decade.

|                                              |                                                                                             |                                                      | Improvement factors                                                       |                                               |                                                                                                                    |                                                                                                                  |                                                                              |                                                                                                                           |                                                                                                                      |
|----------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                                              |                                                                                             | Current<br>in-<br>accuracy                           | Planned mission                                                           | Projected<br>experi-<br>ments                 | Future<br>missions with space optical clocks                                                                       |                                                                                                                  |                                                                              |                                                                                                                           |                                                                                                                      |
|                                              |                                                                                             |                                                      | ACES<br>on ISS<br>(2012)<br>(d,e)                                         | Ground<br>experi-<br>ments<br>(2020)<br>(c,f) | ISS or<br>low<br>altitude<br>orbit<br>(d,e)                                                                        | Highly<br>elliptic<br>Earth orbit<br>(d,e)                                                                       | Inner solar<br>system<br>(Mercury)                                           | Close<br>fly-by of<br>Sun<br>(6 Solar<br>radii)                                                                           | Outer<br>solar<br>system                                                                                             |
| Gravita-                                     | In Earth field                                                                              |                                                      | 4×10 <sup>-11</sup>                                                       | 4×10 <sup>-13</sup> (c)                       | 4×10 <sup>-11</sup>                                                                                                | 5×10 <sup>-10</sup>                                                                                              | -                                                                            | -                                                                                                                         | -                                                                                                                    |
| potential<br>difference<br>ΔU/c <sup>2</sup> | In Sun field                                                                                |                                                      | 4×10 <sup>-13</sup><br>(d,e)                                              | 3×10 <sup>-10</sup><br>(f)                    | 4×10 <sup>-13</sup><br>(d,e)                                                                                       | 4×10 <sup>-13</sup><br>(d,e)                                                                                     | 2×10 <sup>-8</sup>                                                           | 4×10 <sup>-7</sup>                                                                                                        | 9×10 <sup>-9</sup>                                                                                                   |
| Type of test                                 | Time invariance of                                                                          |                                                      |                                                                           | ×40                                           |                                                                                                                    |                                                                                                                  |                                                                              |                                                                                                                           |                                                                                                                      |
|                                              | Local Position<br>Invariance I:<br>Coupling of Earth<br>gravity to<br>fundamental constants | 10 <sup>-2</sup><br>(c)                              |                                                                           | (a,b)<br>×4000<br>(a,c)                       | ×40 000<br>(m)                                                                                                     | ×5×10 <sup>6</sup><br>(m,k)                                                                                      |                                                                              |                                                                                                                           |                                                                                                                      |
|                                              | Local Position<br>Invariance II:<br>Coupling of Sun<br>gravity to<br>fundamental constants  | 10 <sup>-7</sup><br>(r)<br>3×10 <sup>-6</sup><br>(s) |                                                                           | ×10<br>(a,b)                                  |                                                                                                                    |                                                                                                                  | ×70<br>(m)                                                                   | ×1000<br>(m)                                                                                                              |                                                                                                                      |
|                                              | Redshift measurement<br>in Earth field                                                      | 7×10⁻⁵<br>(q)                                        | ×35<br>(i)                                                                | ×35<br>(t)                                    | ×350                                                                                                               | ×40 000<br>(k)                                                                                                   |                                                                              |                                                                                                                           |                                                                                                                      |
|                                              | Redshift measurement<br>in Sun field                                                        | 1×10 <sup>-2</sup><br>(p)                            | ×600<br>(null test),<br>(e,g)                                             |                                               | ×60 000<br>(null test)<br>(e,k)                                                                                    | ×60 000<br>(null test)<br>(e,k)                                                                                  | ×2×10 <sup>7</sup>                                                           | ×3×10 <sup>6</sup><br>(h)                                                                                                 | ×9×10 <sup>6</sup>                                                                                                   |
|                                              | Other science opportunities                                                                 |                                                      | Local<br>mapping of<br>Earth<br>gravitationa<br>I field at 10<br>cm level |                                               | Local and<br>real-time<br>mapping of<br>Earth<br>gravitational<br>field at 1 cm<br>level;<br>Lorentz<br>Invariance | Local and real-<br>time mapping of<br>Earth<br>gravitational<br>field at 1 cm<br>level;<br>Lorentz<br>Invariance | 2 <sup>nd</sup> order<br>redshift<br>test;<br>Shapiro<br>time delay<br>× 100 | 2 <sup>nd</sup> order<br>redshift test;<br>possibly<br>combina-<br>tion with<br>Shapiro time<br>delay<br>measure-<br>ment | Probe<br>gravity on<br>large scale;<br>possibly<br>combina-<br>tion with<br>Shapiro time<br>delay<br>measureme<br>nt |

**Table 2:** Overview of some fundamental physics experiments with atomic clocks on ground and in space. The gravitational potential difference is the relevant one for clock comparisons, e.g. between the spacecraft and ground or between extreme points of the orbit. Column 3 lists the current (2009) inaccuracy levels. The other columns show the potential improvement factors of planned space missions, projected ground experiments and possible future satellite missions. The future satellite missions assume flying  $10^{-17}$  inaccuracy clocks, one in case of redshift measurements, two dissimilar ones in case of LPI tests. The future ground clocks are assumed to gradually improve to  $1 \cdot 10^{-18}$  level by 2020. The atomic clock PHARAO in the ACES mission has a goal inaccuracy of  $1 \cdot 10^{-16}$  The improvement factors for projected ground experiments and future satellite missions are approximate.

Notes:

- a: dissimilar terrestrial clocks with inaccuracy gradually increasing to  $1 \cdot 10^{-18}$  level
- b: combined improvement from clock improvement and long measurement time
- c: measurement with future colocated dissimilar  $1 \cdot 10^{-18}$  clocks compared at altitudes differing by 4 km, compared to current results with  $1 \cdot 10^{-15}$  clocks and 1 km
- d: clock on spacecraft as part of link to compare clocks on ground
- e: comparison via space link of terrestrial clocks separated by one Earth radius
- f: due to Earth orbital motion, used for LPI test
- g: using ACES for comparison of  $10^{-16}$  ground clocks and a large number of repeats
- h: limited by ability to measure spacecraft position; assumed to be 10 m at 6 solar radii

- i: comparing ACES to ground clocks
- k: assuming repeated measurements over many orbital periods reduce uncertainty 10 fold
- m: dissimilar clocks on spacecraft, chosen to have strongly differing sensitivities to fundamental constants
- n: 3.10<sup>-18</sup> clock on a balloon in 40 km altitude compared with similar ground clock
- o: dissimilar  $1 \cdot 10^{-18}$  clocks compared on the ground and on a balloon (more difficult because of space constraints)
- p: Galileo redshift experiment (1990)
- q: Gravity Probe-A
- r: from limits to annual variation of Al<sup>+</sup>/Hg<sup>+</sup> clock frequency ratio
- s: from limits to annual variation of (Hg<sup>+</sup>, Al<sup>+</sup>)/Cs clock frequency ratios
- t:  $1 \cdot 10^{-18}$  level terrestrial clocks compared over 4 km height difference

#### Auger vs EUSO: fundamental physics with ultra high energy cosmic rays

Currently the Pierre Auger Collaboration is operating a detector of 3000 km<sup>2</sup> containing 1600 water-Cherenkov detectors overlooked by 24 telescopes that detect fluorescence light produced by giant air showers as they propagate through the atmosphere. The integrated exposure now exceeds  $10^4$  km<sup>2</sup>·sr·yr and should reach  $10^5$  km<sup>2</sup>·sr·yr by 2020. A second observatory is planned for the northern hemisphere covering an area 7 times as large. Construction of this device might start in 2013 and take three to five years to complete.

The study of the very highest energy cosmic rays can be extended by observations from space. A mission, JEM-EUSO, to be located on the Japanese Experiment Module (JEM) on the International Space Station, has been proposed as a new type of cosmic ray observatory that will use very large volumes of the Earth's atmosphere as a detector of the most energetic particles in the Universe. JEM-EUSO (EUSO for "Extreme Universe Space Observatory") observes the brief flashes of light in the Earth's atmosphere caused by cosmic rays of energy above ~  $5 \cdot 10^{19}$  eV. The key element of the sensor is a very wide-field, very fast, large-lens telescope that can detect these flashes. JEM-EUSO is planned to be mounted on the Space Station in 2015 and, in a projected life of 5 years, is expected to yield an exposure of  $(1.2 - 2) \cdot 10^6$  km<sup>2</sup>·sr·yr, after allowing for a duty cycle of 10 to 20%.

In addition to the astrophysical aspects of ultra high energy cosmic rays, the JEM-EUSO mission has significant potential for fundamental physics exploration through the detection of photons and neutrinos. Measurement of the ultra-high energy photon flux will provide a direct constraint on the contribution of top-down models to the flux of UHECRs. Moreover, ultra-high energy photons are produced as secondary particles during the propagation of ultra-high energy protons. While high-energy photons have a limited horizon due to pair production over CMB photons (the GZK effect), a known loophole of quantum gravity and the Coleman-Glashow effect may prohibit  $e^+e^-$  production above 30 TeV, allowing the ultra-high energy photon path-lengths to extend beyond ~10 Gpc, which would result in an "anti-GZK effect" with an increasing number of sources contributing at higher energy – and thus a much larger flux of ultra-high energy photons. JEM-EUSO has the capacity to detect such photons and to identify them.

The neutrino cross-section at high energies is very uncertain and highly model-dependent: a measurement is needed. Extra dimension models in which the Universe is supposed to consist of ten or eleven dimensions are among the favoured models to unify quantum mechanics and gravitation theory. In these models, the neutrino cross-section is predicted to be 100 times that predicted by the Standard model. Under these conditions, JEM-EUSO should observe 100s of v events, which would allow experimental validation of extra dimension models. In addition, the ratio between the fluxes of horizontal and upward voriginated extended air shower gives a quantitative estimate of the v cross-section around a centre of mass energy of  $10^{14}$  eV. JEM-EUSO has a strong potential for ultra-high energy neutrino detection, which also implies the possibility to constrain the source models directly.

The quantum space-time effects generically known as Lorentz invariance violation also predict a modification of the proton attenuation length, and thus of the GZK horizon, with direct consequences on the super-GZK proton spectrum. Indeed, a difference between the maximum velocities of protons and pions modifies the inelasticity of the pion production interactions at ultra-high energies, and thus the attenuation length.

The two instruments, the Auger Observatory and JEM-EUSO, should be seen as complementary. The Auger Collaboration is using well-established techniques in a well-understood environment and is capable of measuring the energy spectrum with high precision to  $10^{20}$  eV and of making a detailed study of the nuclear mass composition. However the flux of particles that display anisotropy, as noted above, is too small to define spectra from individual sources while it is possible that only upper limits will be set on the fluxes of photons and neutrinos above  $10^{19}$  eV. Even if there are detections, the numbers found are expected to be small.

The Auger Observatory is able to measure the energy of cosmic rays above  $10^{19}$  eV to ~20%, the direction of the particle to 1° and can make statements about the mass of the nuclear component of cosmic rays through accurate measurements of the depth of shower maximum (to about 25 g cm<sup>-2</sup>).

By contrast, JEM-EUSO will have an energy resolution of about 50% at its threshold of 5  $\cdot 10^{19}$  eV increasing to better than 30% at higher energies. The directions will be measured to about 2.5° and the depth of shower maximum to < 120 g  $\cdot$  cm<sup>-2</sup>. Although this latter figure will prevent separation of different nuclear masses, it is easily adequate for the detection of neutrinos and photons and, when combined with the enormous aperture, will provide the very important fundamental physics measurements discussed above.

#### Ground vs space interferometers for gravitational waves

In the last few years the first generation of large-scale interferometric gravitational wave detectors (LIGO, GEO600 and Virgo) have reached the original design sensitivity in a broad frequency window, achieving a sensitivity to detect a (dimensionless) strain amplitude of  $h < 10^{-21}$  at a frequency around 100 Hz. The next decade will see the operation of an international network of ground-based gravitational-wave interferometers (Advanced LIGO in the US, Advanced Virgo and GEO HF in Europe, and LCGT in Japan) which will reach the level of sensitivity where the first detection can be expected (about one order of magnitude more sensitive than the first generation). Meanwhile, the discussion of third generation detectors has begun in earnest with the EU funded Einstein Telescope (ET) design study. The aim of third generation detectors is to improve the broadband sensitivity by another order of magnitude. On the other hand, LISA will provide detection in a frequency window which is inaccessible to ground interferometers and which is very interesting from the point of view of astrophysics and cosmology.

Ground-based gravitational wave detectors are sensitive to signals in the audio-band, ranging from a few Hz up to several kHz. They can detect a variety of astrophysical sources, including rapidly spinning non-axisymmetric neutron stars, supernovae, and coalescing binaries consisting of compact objects such as neutron stars and/or black holes, that give us an opportunity to investigate general relativity in strong field conditions.

The frequency domain below one Hz can be only explored from space, because of the fundamental limit imposed by terrestrial gravity gradient noise. The frequency decades

immediately below 1 Hz are expected to be particularly rich with gravitational wave signals, as compact object sources spend much more time at these lower frequencies before arriving into the terrestrial observation band. Also, much more massive sources, which merge long before their radiation frequencies evolve into the ground-based detection band, will be visible for up to several years in the sub-Hz bands. LISA, with 5 million kilometer long arms, will cover a frequency range of  $3 \cdot 10^{-5}$  to 1 Hz, complementary to the frequency window covered by ground-based instruments. Contrary to ground interferometers, the signal-to-noise ratios for typical LISA sources are large, from tens to thousands. This makes LISA ideally suited for the study of massive black holes binaries that form after galactic mergers, compact stellar remnants as they slowly spiral to their final fate in the black holes at the centres of galaxies, galactic compact binaries and potentially the signatures of new physics beyond the standard model.

Third generation ground-based detectors, such as ET, with a wide band sensitivity from 1 Hz up to 10 kHz, will be able to address a range of problems in fundamental physics, cosmology and astrophysics. ET would facilitate the study of cores of compact objects and general relativistic instabilities, pin down the origin of gamma-ray bursts and resolve their different classes and understand the mass-spectrum of compact stars and their populations. Observation of intermediate-mass binary black holes would provide an inventory of the recent history of black hole formation in the universe, and when combined with the redshift of their electro-magnetic counterpart, would lead to an accurate measurement of several cosmological parameters. ET would also facilitate high precision tests of general relativity that are not possible with solar system or binary pulsar observations.

As a follow-on mission to LISA, the Big Bang Observer (BBO) is proposed to NASA as a Beyond Einstein mission, targeted at detecting stochastic gravitational waves from the very early universe in the band 0.03 Hz to 3 Hz. BBO will also be sensitive to the final year of binary compact body (neutron stars and stellar mass black holes) inspirals out to z < 8, mergers of intermediate mass black holes at any z, rapidly rotating white dwarf, explosions from Type 1a supernovas at distances less than 1 Mpc and < 1 Hz pulsars. BBO is expected to provide fruitful insights into the universe, particularly about dark energy, the formation mechanism of supermassive black holes and the inflation of the universe.

While BBO is seen as a successor to LISA in the US and Europe, the DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz. The current plan is for DECIGO to be a factor 2–3 less sensitive than BBO, but for an earlier launch. DECIGO can play a role of follow-up for LISA by observing inspiral sources that have moved above the LISA band, and can also play a role of predictor for terrestrial detectors by observing inspiral sources that have not yet moved into the terrestrial detector band. In order to increase the technical feasibility of DECIGO before its planned launch in 2024, the Japanese are planning to launch two milestone missions: DECIGO pathfinder and pre-DECIGO.

#### Ground vs space for atom interferometers

Promising tools for fundamental physics tests in the quantum domain are matter-wave sensors based on cold atoms or atom lasers, which use atoms as unperturbed microscopic test bodies for measuring inertial forces or as frequency references. The rapid advance of atominterferometer technology in recent years has motivated several studies and proposals: measuring forces at small distances, testing the universality of free fall, searching for gravitational waves... Already in the very early papers on matter-wave interferometers based on the atom-light interaction as a coherent beam splitter mechanism, it was pointed out that these devices are a symbiosis of an atom and a light interferometer. The atoms serve as readout for the phase evolution of the beam-splitting laser. For testing the equivalence principle, two atomic species can be used simultaneously in a single atom interferometer: for gravitational wave detection, the effect of gravitational waves is monitored by performing a differential measurement between two spatially separated atom interferometers operated simultaneously using the same laser pulses. In both cases, the laser provides a common "ruler" for comparison of the two interferometers. In the latter case, the distance between the interferometers can be very large as only the light travels over such distance, not the atoms. The gravitational wave detection signal, which scales with this distance, can become competitive with light interferometers. In a sense, the atom interferometers are the analogue of the test masses in a light interferometer like VIRGO and it is the distance between them that determines the size of the detected signal.

For a ground-based interferometer, calculations performed by the group of M.A. Kasevich at Stanford University have shown that there is an oscillatory gravitational wave signal in a configuration of two atom interferometers separated by a distance L that is as large as experimentally achievable. Intuitively the atom interferometer can be thought of as precisely comparing the time kept by the laser clock (the laser phase), and the time kept by the atom clock (the atom phase). A passing gravitational wave changes the normal flat space relation between these two clocks by a factor proportional to the distance between them. This change oscillates in time with the frequency of the gravitational wave. This is the signal that can be looked for with an atom interferometer. Equivalently, the atom interferometer can be thought of as a way of laser ranging the atom motion to precisely measure its acceleration. Calculating the acceleration that would be seen by laser ranging a test mass some distance away in the metric of the gravitational wave shows a similar oscillatory acceleration in time, and this is the signal of a gravitational wave in an atom interferometer. This radar ranging picture is very similar to the foundation of the space-based LISA interferometer, where a macroscopic test mass is used instead of the atoms here.

A natural extension of all these proposals is to perform an experiment in space. The sensitivity of matter-wave interferometers for rotations and accelerations increases with the square of the measurement time. Current experiments on ground operate at about 100 ms, which could be extended in space to up to 10 or more seconds. For example increasing the measurement time by a factor 10 improves the sensitivity of acceleration measurement by a factor 100. As for long baseline light interferometers, the collimation of the source is important and operating in space implies reducing the speed of the expansion of the atomic cloud. The spectacular success of techniques to cool atoms with laser light and by evaporation resulted in temperatures of nanokelvin to microkelvin. Long interrogation time can be obtained on ground in fountain clocks, where atoms are launched upwards to take benefit of the slow expansion. Taking full benefit out of the accessible temperature range would realise fountains with 10 to 100 meters height. The long flight distance represents an intrinsic problem, as all perturbations have to be shielded over this distance in a uniform way. Measures to compensate for gravity with additional forces unavoidably perturb the sensor and are therefore not a solution. Consequently, on ground the 1-g environment sets clear limitations for ultimate sensitivities. Microgravity is thus of high relevance for matter-wave interferometers and experiments with quantum matter (Bose-Einstein Condensates or degenerate Fermi gases) as it permits the extension of the unperturbed free fall of these test particles in a low-noise environment.

### Future of astrophysics instruments with relevance for fundamental physics

Currently, studies of dark energy missions and ground-based instruments that can be used to constrain the properties of dark energy are under way. As the results are not yet fully known, we leave these out of this first version of the roadmap. Here we briefly describe the next generation general astronomy instruments and the expected improvement in the tests of fundamental physics that they will offer.

The Square Kilometer Array (SKA) is a large radio telescope planned to be operational around 2020. It will discover thousands of new pulsars, including possibly more extreme systems than currently known such as pulsar – black hole binaries, and provide a new basis for pulsar timing array measurements of very low frequency gravitational waves. More pulsars and in particular those with lower residual noise will improve the sensitivity compared to current pulsar timing arrays by several orders of magnitude.

There are plans to study UHECRs and neutrinos with energies above  $10^{20}$  eV using radio telescopes (in particular SKA) to observe emissions from the regolith of the Moon. No such detections have been made in preliminary work by the GLUE project, using the Goldstone radio telescope. Pilot projects using the Westerbork Synthesis Radio Telescope Array are under way. These efforts are particularly interesting for the highest energies, substantially above  $10^{20}$  eV where the technique is most sensitive and thus are complementary to JEM-EUSO which is designed to work at lower energies where UHECR are known to exist.

Continued pulsar timing studies will give increasing accuracy in their tests of general relativity as some effects (apsidal angle and time of periastron) are secular effects that build up in time.

The next generation optical telescopes (Extremely Large Telescopes or ELTs) will have diameters in the 20-40m range and are expected to become operational in 2015-2020 timeframe. They will be able to observe supernovae to much larger distances and may provide strong constraints on varying fundamental constants or time varying redshifts by very high accuracy spectroscopy.

# C. A roadmap for fundamental physics in space

# C-1. Key science objectives

Before embarking in the next Section on setting up priorities in fundamental physics for the space programme, let us pause to summarize the key scientific objectives, as well as the experimental or observational means necessary to address the corresponding questions (*in italics are those means not specific to the field of fundamental physics*).

- Are the fundamental principles of general relativity verified in Nature? (properties of gravitational waves in the 10<sup>-4</sup> to10<sup>-1</sup> Hz range, test of equivalence principle, measurement of PPN coefficients, clock redshift)
- What is the law of gravity at all scales? (motion of massive bodies, propagation of light, clock redshifts, *galactic and cosmological observations*)
- How does gravity behave in the strong field regime (close to black holes, neutron stars)?

(gravitational waves, X-ray observations,...)

- Is Lorentz invariance a symmetry of our Universe? (test of local Lorentz invariance, test of the equivalence principle, study of distant sources of energetic particles and photons)
- Are the laws of quantum mechanics verified in Nature? (entangled photons, decoherence, matter wave interferometry)
- Can we get insight into the possible unification of gravity and the quantum theory (Standard Model)?

(test of equivalence principle, nonconstancy of constants, test of Lorentz invariance, neutrino cross section at high energies, detection of superheavy particles)

- If a new form of energy i.e. dark energy accounts for the recent acceleration of the expansion of the Universe, what is its nature? (test of equivalence principle, tests of nonconstancy of constants, test of long range forces, *gravitational lensing, standardizable candles/rulers...*)
- If dark matter exists, what is its nature? (detection of high energy cosmic particles, test of long range forces, possible decay of dark matter particles, *lensing*)
- What are the mechanisms of the acceleration of cosmic particles? (detection of high energy cosmic particles of various kinds: photons, neutrinos, protons, ions)

# C-2. Priorities for the space program

#### Approved missions

It has already been stressed that a certain number of missions have already been approved, namely LISA PathFinder, ACES and Microscope. These missions have allowed the development of some key technological programs for the future of fundamental physics in space. It is of vital importance for the field that they are launched. This will increase the TRL of some important subsystems, a key to the success of future missions.

#### **Candidate missions of CV1**

It is not in the mandate of the Advisory Team to discuss missions already present in CV1. We only stress here their importance for the field of fundamental physics.

The dark energy mission EUCLID has been undergoing a further selection process during this roadmap effort. We thus refrained to interfere with this process. As is clear from the discussions above, the issue of dark energy has far reaching consequences in fundamental physics.

The LISA mission was included three years ago into the competition for the L1 mission of the Cosmic Vision program. It will undergo the next selection next year. As has been repeatedly stressed above, the LISA mission is central to fundamental physics, both through its scientific program and the technologies developed for its completion.

#### **Future missions**

For advancing some of the key questions listed above, mission concepts involving clocks and (matter wave or electrostatic) accelerometers are readily available. Regarding forthcoming mission calls, the Advisory Team believes that a two order of magnitude improvement in the precision of key parameters testing fundamental laws would justify a Mmission. Given the urgency of the anticipated M call, the status of a possible mission with an optical clock, a mission testing the equivalence principle, a mission to the outer solar system, a high-energy mission and JEM-EUSO as a possible mission of opportunity are discussed below.

#### Testing general relativity using a M mission with an optical clock

Given the expectations of space clock development (see the subsection "Clocks on ground vs clocks in space" and especially Table 2 in Section B.4 as an important input to the present discussion), one may seriously envisage an M-mission with an optical clock, addressing a large number of the scientific questions listed in subsection C.1. Assuming an uncertainty of the onboard clock of  $1 \cdot 10^{-17}$ , and an optical link allowing the comparison of such a clock to ground optical clocks at the same level of uncertainty, one can envisage two scenarios that would allow significant improvements (> 100) on several key parameters (see Table 2). In a high Earth orbit, such a mission could provide an improvement by about three orders of magnitude on the redshift measurement expected from ACES, perform improved LPI (Local Position Invariance) and LLI (Local Lorentz Invariance) tests, and contribute to other fields (international time/frequency metrology, geodesy). In an inner solar system orbit (approaching the Sun to about Mercury distance) the improvement of the redshift measurement with respect to ACES would be  $10^4$  to  $10^5$ , with  $10^3$  improvement on the LLI

test (with respect to ACES) and moderate improvement on the LPI test. Additionally a solar conjunction would allow a measurement of PPN  $\gamma$  at the 10<sup>-7</sup> level or slightly below (limited mainly by the terrestrial atmosphere) representing an improvement by more than an order of magnitude on the result expected from GAIA and BepiColombo. An onboard accelerometer (and possibly drag free technology) will be essential for precise orbit determination in the presence of non-gravitational perturbations. Finally, an extension of the orbit towards the outer solar system (possibly to Jupiter or further), if feasible, would allow some insight into scale dependent modifications of the spacecraft trajectory, light propagation and clock frequency.

While the optical clock payload would have the best available performance, a payload containing an upgraded version of the PHARAO clock, and a high-performance microwave and optical link would still provide a significant gain in accuracy in combination with a highly elliptic Earth orbit. In that case, the TRL level of the payload elements is already high, so that such a mission could be more readily implemented within the next call.

#### Equivalence principle and accelerometers

As we have discussed above, tests of the principle of equivalence are at the heart of fundamental physics and are an important tool to get deeper insights into the fundamental interactions. The current findings such as dark energy and dark matter motivate tests even more than in previous times.

On ground, tests have been performed with an accuracy of 1 part in  $10^{13}$  by pendulum experiments and lunar laser ranging. Currently the MICROSCOPE mission is prepared to test the free fall of classical macroscopic test bodies in a near-Earth orbit with an accuracy of parts in  $10^{15}$ . Future tests aiming at 1 part in  $10^{17}$  and better are considered a very important test of the fundamental laws of nature and have to be developed further.

There are different approaches and technologies outlined showing the potential to achieve this goal. Current approaches, including that adopted by MICROSCOPE, use carefully machined bodies of different materials combined with different read out techniques such as electrostatic sensors, superconducting magnetometers or optical interferometry. A new, alternate approach is based on quantum sensors which rely on the wave nature of matter. Depending on the findings of the MICROSCOPE mission, developing complementary experimental techniques, with different systematic uncertainties and possibly probing different physical models, may become even more important.

Testing the weak equivalence principle at the 10<sup>-17</sup> level is the object of several mission concepts involving macroscopic test masses. STEP, and related proposed experiments, extends the MICROSCOPE concept with contact-free test masses, liquid He-temperatures, and a SQUID-based readout, with cryogenic and SQUID heritage from the NASA GP-B relativistic gyroscope mission. The GG concept aims at similar sensitivities and employs mechanically suspended coaxial test masses in a "spinning top" configuration, which moves the WEP-violating signal to the 1 Hz bandwidth. Other possibilities include an upgraded MICROSCOPE configuration exploiting laser interferometry and contact free test masses from LISA Pathfinder to reach higher sensitivities.

The success of converting such equivalence principle test concepts into funded missions will hinge on their ability to demonstrate – either on ground or with drop towers, parabolic flights, or ISS/ATV flight – that their sensitivity goals are compatible with possible performance. This includes pushing measurements of systematic error sources and stray force noise, in addition to readout noise, near to the levels needed in space. A compromise will have to be achieved between the most ambitious science return and realistic probability of a successful mission within budget and time scale constraints.

Testing the equality of inertial mass and gravitational mass with matter waves would extend tests of the principle of weak equivalence to the quantum domain. Some theorists support the idea that tests of the principle of equivalence have to be performed with quantum particles or matter waves. Laser cooling and quantum degenerate gases allow engineering of giant delocalised wave packets of matter, which are subjected to gravity and can be seen as new kind of test masses, which can be pure isotopes of bosonic and fermionic nature. These matter wave interferometers work as calibration-free gravitational sensors. Experiments are being prepared on ground and for space in the ambition to be even more sensitive than current tests with classical bodies. The experimental concept is based on matter wave interferometers, where matter waves are coherently split to propagate through gravity over several classical trajectories. Ground based studies aim to narrow the gap between the sensitivities one may expect in space using different techniques so that a more precise extrapolation for the accuracies beyond the MICROSCOPE level towards the range of 1 part in 10<sup>17</sup> and beyond can be achieved.

The accuracy and sensitivity of local-acceleration measurements using atom interferometry nowadays rival state-of-the-art conventional accelerometers using macroscopic test masses. With such sensors, the quantity measured directly relates to the acceleration of weakly interacting particles via experimentally well-controlled quantities, such as laser wavelengths. In addition, the evolution of these particles in the gravitational field can be modelled within a covariant quantum field theory. Recent results using atom-interferometric gravimetry to compare the acceleration between two isotopes have demonstrated the possibility of atominterferometric tests of the UFF. Ongoing efforts to extend the size of inertial-sensing atom interferometers by increasing the interrogation time open the door to high-accuracy atom accelerometers which will be very sensitive to smaller accelerations, thus pushing the limits of these tests. These long interrogation times, i.e. large free-fall heights, can be achieved when using a large experimental chamber to launch the atoms such as a 10 m-high fountain.

Compact apparatus can also be used in reduced-gravity environments, such as drop towers, orbital platforms or atmospheric parabolic flights. Atoms, isolated in a vacuum chamber, are truly in free fall in the Earth's local gravity field, as long as they do not hit the chamber walls, or experience field gradients (optical or magnetic). Measuring differential phases between similar interferometers using the same light has been shown to reject common-mode inertial noise up to large scaling factors and this method can be efficient in performing a differential measurement between two inertial sensors using atoms of different mass and interrogation wavelength. Even for large vibrational noise, and large interrogation times, the differential phase shift, i.e. the acceleration difference, can be measured to a high precision. This opens new perspectives for the development of high precision tests in fundamental physics such as tests of the equivalence principle. For example, a precision of  $\eta \sim 5 \cdot 10^{-11}$  could be achieved with a free-fall time of 4 s in the Zero-G Airbus, such as for the ICE experiment. Nextgeneration tests of the UFF should then be developed on dedicated orbital platforms where a target accuracy of  $\eta \sim 8 \cdot 10^{-15}$ , close to that of the project MICROSCOPE, is reachable with no specific drag-free platform. On a dedicated satellite mission a maximum differential acceleration sensitivity of  $5 \cdot 10^{-16}$  m/s<sup>2</sup> corresponding to an accuracy of the test of the equivalence principle of 1 part in  $10^{16}$  could be achieved.

#### Missions to the outer solar system

We have stressed above the importance of testing gravity at all distance scales. Dedicated missions and instruments will contribute to closing the observational gap between precision Earth-based observation (*e.g.* lunar laser ranging based on the Earth-Moon distance) and astronomical observations. Generally speaking, one expects observable effects on the gravitational motion of test-bodies, the trajectory of light, and the behavior of clocks, as a

function of distance to the gravitating body. In most space experiments one observes a combination of those three effects, so diverse experiments are required to disentangle them and restrict the corresponding parameter space of alternative theories.

In this context, planetary missions to the outer planets can play an important role, as their gravitational trajectories, when sufficiently well determined and controlled, offer the current best large scale probe of some of the observable effects discussed above. In particular, any inconsistencies in the analysis and modeling of the navigation data may be hints towards new physics. However, such missions are optimized for their primary (planetary) objectives, and as a result the information available on fundamental physics is not always unambiguous and/or sufficiently precise. In future planetary missions, it would therefore be desirable to include fundamental physics objectives, and if necessary related instruments (when possible), at the earliest possible stages of the mission design.

In future missions to the outer solar system, the key technologies for the efficient study of scale dependent gravity are those required for precise spacecraft navigation and high precision timing: accelerometers and drag free technology, atomic clocks, high performance radio and/or optical links. Ideally, a combination of all of those technologies on a mission reaching the outer solar system would provide the most complete mapping of gravity at all attainable scales by man-made artifacts. Inclusion of such technology (with sufficient performance) on planetary missions and/or planetary landers designed for long lifetimes in a harsh environment would also continue to provide useful information for fundamental physics.

It is felt by the Advisory Team that for missions to the outer solar system the strong science case related to scale dependent gravity is counterbalanced by the complexity, cost, and technological difficulty of such missions. As a consequence, a mission to the outer solar system dedicated solely to fundamental physics objectives is not deemed realistic. However, the Advisory Team supports a mission that genuinely combines fundamental physics and planetary science objectives (Neptune and its moons, Pluto and other Kuiper belt objects...) and such opportunities should be explored. As such missions are currently impossible for ESA alone because of the lack of RTG power supplies in Europe (a point that needs to be clarified in the short to medium term ESA technology development plan), the opportunity for a collaboration with other agencies may need to be studied. Furthermore, the Advisory Team encourages more theoretical work to study in detail the possible impact of such missions in different theoretical models.

In conclusion, planetary missions to the outer solar system have been (Viking, Cassini-Huygens) a major source of information for fundamental physics in the solar system, and have triggered large interest in the field. This is likely to continue with future planetary missions, provided the fundamental physics objectives and specific mission requirements (precise navigation, additional instruments...) are sufficiently taken into account at an early stage in the mission development. Dedicated fundamental physics missions to the outer solar system (L or M class) are of particular interest in the context of scale dependent gravity, but their chances of selection and success will likely depend on a good combination and compromise of fundamental physics and planetary science objectives.

#### High energy missions

In the field of high energy astrophysics, there is a flurry of activity around the signals provided by particle detectors in space (PAMELA, Fermi), and their possible connection with dark matter annihilation. The AMS02 mission should now be launched very soon. The community eagerly waits for the results of these missions to study new mission concepts for future calls.

#### Mission of opportunity: JEM-EUSO

The JEM-EUSO instrument offers a mission of opportunity of interest to scientists in France, Germany, Italy and Spain as well as in Japan, Mexico and the USA. The proposal is to fly a telescope of 2.5 m diameter with  $\pm 30^{\circ}$  field of view on the International Space Station to observe cosmic rays above  $4 \cdot 10^{19}$  eV through the fluorescence radiation that they create in the Earth's atmosphere. It is a high-energy astroparticle physics mission, following PAMELA, AMS and Fermi, that offers significant opportunities in fundamental physics and, given 5 years of operation, will provide an exposure more than a factor of 10 larger than likely to be achieved with the Auger South Observatory.

# C-3. Technology

Fundamental physics in space employs a very wide range of technologies to achieve the instrumental performance required for each mission. Experiments are often based on precision measurements requiring state-of the-art instruments with excellent control of systematic effects and environmental perturbations. The scientific progress is therefore very closely linked with the development of precision technologies. This makes such missions challenging for scientists and engineers but also very fruitful as test beds for emerging technologies which have immense potential in other fields of application.

Different stages can be identified in the development of fundamental physics technologies for space:

- 1. Theoretical and laboratory demonstration of new concepts
- 2. Improvement of the technological readiness level in cooperation with industry
- 3. Manufacture, testing and delivery of flight hardware.

While stage 1 might be expected to take place in Universities and research laboratories it is important that there is close cooperation between such institutes and industrial partners with space experience from the earliest moments of stage 2. Indeed, involving appropriate industry even in stage 1 can be beneficial in ensuring that appropriate choices are made of critical components. The QA and schedule requirements of stage 3 make it mandatory that this be carried out by experienced industrial companies, but with the originating institutes available as consultants to support the achievement of the desired performance.

Fundamental physics can sometimes be carried out as a passenger activity on other space science missions. To facilitate this method of working, ESA should consider offering the early study outputs of all missions to the Fundamental Physics community for analysis to see if a cost effective addition to the payload would generate important new science in the field of fundamental physics.

#### Free-falling test masses, electrostatic accelerometers and drag-free satellites

A large class of fundamental gravitational experiments involve the measurement of the relative acceleration between free-falling test bodies. This ranges from weak equivalence principle tests – where the differential acceleration between nominally coincident test bodies is measured – to gravitational wave observation – acceleration between distant test masses – to time delay and deep space gravity tests with the relative acceleration between a distant spacecraft and the Earth.

A detector of the relative acceleration between a spacecraft and a free-falling "geodesic reference" test mass inside the spacecraft is at the heart of many of these measurements.

Non-gravitational forces acting on the satellite can be effectively removed, by measurement and subtraction or by active orbit compensation. These two operation modes are:

- Accelerometer mode, in which the reference test mass is forced to follow the satellite, with the satellite non-gravitational acceleration calculated from the applied force;
- Drag-free mode, in which the satellite thruster system uses the sensor of relative test mass-spacecraft displacement to actively servo the satellite to remain centered with respect to the geodesic reference test mass.

Electrostatic displacement sensors and force actuators, commonly referred to as electrostatic accelerometers, are used extensively in both of these roles, including:

- Measurement of non-gravitational spacecraft accelerations for precision trajectory and time delay measurements (BepiColombo), geodesy (GRACE), and future possible deep-space gravity tests.
- Measurement of the relative acceleration of different free-falling test-masses inside the same spacecraft, for a weak equivalence principle measurement (Microscope), and geodesy (GOCE), both employing drag-free control using at least one free-falling test mass.
- Displacement measurement for a drag-free control, and, in general defining the freefall environment, for a geodesic reference test mass, such as for LISA and LISA PathFinder. Here an interferometric readout substitutes the electrostatic sensor in the most sensitive measurement axis, with the electrostatic sensing and actuation used for sensing and control of the additional degrees of freedom.

Europe has the lead in currently flying high precision electrostatic space accelerometers, with the ONERA-based accelerometers in orbit with GOCE (and planned for MICROSCOPE) defining the current state of the art. These allow accelerometry at the  $pm/s^2/Hz^{1/2}$  level at several mHz, with displacement sensitivity of order tens of  $pm/Hz^{1/2}$ . Europe also leads the effort to bring free fall technology level into the  $fm/s^2/Hz^{1/2}$  range, with the LISA PathFinder flight test of free fall for LISA to launch in the next couple years.

Several factors limit the sensitivity of MICROSCOPE-class electrostatic accelerometers. The inertial or geodesic reference test mass is connected to the surrounding sensor by a thin wire, which fixes the test mass potential in the presence of charging from cosmic and solar particles. The wire introduces sensitivity limiting force noise and an unknown force offset. Small test mass-sensor gaps, of order hundreds of microns, allow picometer-sensing, but also introduce significant force noise from stray electrostatic fields and Brownian residual gas impacts. Finally, in applications without drag-free control, the application of electrostatic forces invariably introduces a noisy test mass acceleration, in addition to a force calibration issue for cases where the relevant acceleration must be known to high relative accuracy.

The LISA gravitational wave mission builds on ONERA electrostatic hardware to push the use of geodesic reference test masses to the needed  $\text{fm/s}^2/\text{Hz}^{1/2}$ -level. The ground wire is removed, leaving no mechanical connection between spacecraft and test mass. Large, several millimeter gaps limit force noise from stray electrostatics and gas impacts. No electrostatic forces are applied along the sensitive measurement axis, with the spacecraft drag-free controlled. Ground testing with torsion pendulums has demonstrated the absence of unknown acceleration noise sources at the level of tens of  $\text{fm/s}^2/\text{Hz}^{1/2}$  inside the electrostatic sensor, and the LISA PathFinder mission will provide an all-encompassing acceleration noise test at levels approaching the LISA goal.

The improved performance with the LISA hardware increases complexity and price. The larger gaps limit the electrostatic position sensitivity to the  $nm/Hz^{1/2}$  level, which requires the use of an interferometric position readout to reach sub-femto-g acceleration measurement

noise at most frequencies. The lack of a grounding wire requires a UV photoelectric discharge system to control cosmic ray charging. Finally, the drag free system demands high precision, low noise, and long life microNewton thrusters.

In the absence of a drag free satellite system, an "absolute" accelerometer with high relative accuracy and very low "DC bias" is needed for accurate measurement of the DC or very low frequency acceleration of a satellite. An electrostatic sensor, based on the GOCE heritage, and designed to remove a DC acceleration bias from forces originating in the sensor itself, is currently under development for application in deep space trajectory measurements. The sensor would allow 180° rotation of the accelerometer, thus reversing the sign of any sensor-related test mass acceleration, aiming to allow a "low-bias" accelerometry measurement valid to the  $10^{-7}$  Hz frequencies relevant to a deep space gravity test with spacecraft tracking, to the 40 pm/s<sup>2</sup> level. Such an instrument (GAP) is proposed for inclusion on a planetary mission, as suggested by the FPAG recommendation FPAG(2007)8. More generically, accelerometers with good performance at low frequency are developed in different groups as less costly and less complex alternative to full drag free operation where feasible.

A key technical hurdle for low bias accelerometry and drag free systems for use at DC or extremely low frequency, whatever the type of sensor, is the test mass acceleration due to the self-gravity of the spacecraft itself. The LISA PathFinder mission, for instance, must achieve, and will test, spacecraft self-gravity control to the nm/s<sup>2</sup> level, and significant improvement upon this is demanding for spacecraft design and integration.

A drag free control system uses an array of high precision thrusters to keep the spacecraft centered upon a geodesic reference test mass, based on the readout of an electrostatic or interferometric displacement sensor. In the limit of high drag-free gain, with thruster control quick enough to provide high attenuation of force disturbances acting on the spacecraft, the spacecraft follows the test mass to within the displacement sensor noise, giving several key advantages:

- In the absence of applied electrostatic forces, a limiting source of force noise and dynamic range is removed, resulting in a better geodesic reference.
- The quiet spacecraft motion reduces the coupling into the motion of the test mass, again reducing the overall acceleration noise of the reference test mass.
- The quiet spacecraft becomes an inertial platform for further small force experimentation.
- For applications where the test mass (or spacecraft) acceleration must be known to high accuracy, the electrostatic force calibration is eliminated, as is, to first order, the displacement sensor calibration.

Drag-free systems have been implemented on GOCE and GP-B, and are envisioned for the upcoming MICROSCOPE and LISA PathFinder missions. These last two, and LISA, will employ ionic and/or colloidal propulsion. Development of reliably and durably performing microNewton thrusters has been a challenging technical issue for these missions. Demonstrating their performance is a key aspect of LISA PathFinder, and testing their useful lifetime for the longer LISA mission remains an important ground testing issue.

# **Recommendations:**

- Launching LISA PathFinder without further delay is of vital importance to the development and validation of low noise electrostatic accelerometers, drag free technology, and future missions in fundamental physics.
- Ground testing of longer lifetime microNewton propulsion is key for MICROSCOPE, LISA and any future multi-year drag free mission.

- The development of low bias accelerometers, compatible with 10 pm/s<sup>2</sup> spacecraft tracking at frequencies down to 10<sup>-7</sup> Hz and below is essential for gravity tests using dedicated or planetary missions, and should be pursued. In parallel the accommodation of such accelerometers onboard the spacecraft and corresponding constraints (including self-gravity) should be investigated from the early stages of the mission design.
- Future missions demanding significant improvement on the fm/s<sup>2</sup>-level of free-fall, such as advanced gravitational wave missions, will require, in addition to all-optical sensing, redesign of the gravitational reference hardware that houses the test mass, likely including significant pressure reduction (below the 10<sup>-6</sup> Pa level targeted for LISA), larger test mass-sensor separation and/or larger test mass.

#### Development of optical clocks for space applications

In ground-breaking work performed in Europe, a high-performance cold-atom space clock (PHARAO), an active hydrogen maser (SHM, space hydrogen maser) and associated systems for frequency comparison with ground (MWL, microwave link) have been developed to engineering model level in 2009. A flight model is under construction and to be delivered in 2011. The flight model will be part of the ACES mission ready for launch to the ISS in 2013. The specifications of the PHARAO cold atom clock are  $1 \cdot 10^{-13}/\tau^{1/2}$  instability (up to 1 000 000 s) and  $3 \cdot 10^{-16}$  inaccuracy, with a goal of  $1 \cdot 10^{-16}$  for the latter.

A second flight model of PHARAO for another mission after ACES could be built, capitalizing on the initial investment. The cost would be modest compared to the total cost incurred until delivery of the first flight model. This second clock could be used for a number of missions exploring fundamental physics, capable of producing science results beyond ACES, both with Earth orbiting and interplanetary missions.

Optical clocks represent the next generation of clocks. Considering the performance of PHARAO and considering the efforts and the high costs that the development up to flight hardware of an optical clock would require, such an investment is only justified and will only find support if its metrological performance or other properties (dependence on fundamental constants) will enable science results significantly richer than those achievable with the available space clocks, in particular PHARAO. Parameters such as volume, mass, power may play a role in the mission as well.

For fundamental physics, the availability of a clock with performance significantly superior to that of PHARAO is seen as very important. The higher precision of the experiments that one could reach with an optical clock of such performance could be a decisive factor in justifying a mission. An optical clock also allows more simply the use of a laser link from the space clock to ground clocks, should this be necessary for particular mission scenarios. It is therefore suggested to develop a space clock that will have a performance a factor 10 better in accuracy than PHARAO, as well as a hundred-fold better stability.

Optical clocks have recently reached such performance levels. In the USA, the NIST laboratory has demonstrated trapped ion clocks (Al<sup>+</sup> and Hg<sup>+</sup>) with inaccuracies of  $9 \cdot 10^{-18}$  and  $2 \cdot 10^{-17}$  respectively, which represent the best optical clock performance. While these represent challenging options for space clocks in view of their level of complexity (quantum logic technique for Al<sup>+</sup> and cryogenics for Hg<sup>+</sup>), there are other options that are more readily adaptable for space and are also considered capable of reaching the  $10^{-17}$  performance level. These include both single-ion clocks and neutral atom lattice clocks, e.g. the Yb<sup>+</sup> ion clock (the best-performing optical clock in Europe at this time) with  $4.5 \cdot 10^{-16}$  inaccuracy and the Sr

lattice optical clock with an uncertainty of  $1.5 \cdot 10^{-16}$  (JILA, 2008). Concerning frequency instability, a comparison of a Sr and a Yb lattice clock has demonstrated a level of  $3 \cdot 10^{-17}$  (NIST, 2009).

Intense clock development activities are underway in Europe. National metrology and university institutes have developed laboratory optical clocks of both types (single ion, neutral atom ensembles) and are in the process of developing clocks based on novel atomic species. Concerning the state-of-the-art in Europe, the currently lowest uncertainty is  $4 \cdot 10^{-16}$  for a Yb ion clock (PTB). However, progress is rapid, and optical clock developments are planned to reach  $1 \cdot 10 - 16$  inaccuracy for both neutral atom and ion optical clocks within the year 2010 in several laboratories (e.g. PTB, SYRTE, NPL).

The existing experience and current development activity on space optical clocks is as follows:

- 1. Significant knowledge exists in the groups and companies that have developed ACES and more specifically PHARAO. A large number of sub-systems or components as well as modeling, specifications, and testing know-how have been acquired in developing this space atomic clock, on items such as narrow-linewidth lasers, shutters, optics, optical bench, acousto-optic modulators, injection-locking, fibers, ultra high vacuum vessels, magnetic field control, thermal control to minimize systematic shifts, calibration and operational procedures, and many more. This is an extremely important experience base that can be applied well to optical clocks and it is considered absolutely necessary to use it in order to save cost and time.
- 2. Additional space-qualified subsystems (frequency-stabilization units based on ULE cavities, fiber lasers) already developed by space industry in ESA member states for other applications could be adapted to the optical clock needs.
- 3. Significant developments in industrial (terrestrial) laser technology have taken place in recent years, which have led to the availability of reliable off-the-shelf components, and different laser technology approaches for different optical clocks, allowing different options towards space clocks.
- 4. A good part of the new technology developments needed for space optical atomic clocks is independent of the type of atom or ion used (e.g. high-power diodes, ultra stable optical cavities, frequency stabilization, frequency comb, optical frequency conversion, etc...) and thus generic to the field.
- A European consortium has made a significant effort in developing compact and 5. transportable optical clock demonstrators, based on lattice-trapped neutral atoms. The development includes a compact and transportable Sr breadboard, a Yb transportable apparatus and the corresponding compact clock laser subsystems. The two clocks are planned to become operational by the end of 2010. This work has been funded in the ELIPS program of ESA within the Space Optical Clock (SOC) mission. SOC is presently under development for a flight opportunity on the ISS in the 2020 timeframe. The goal of this development is an optical clock with a performance at the few times 10<sup>-17</sup> level of inaccuracy and an instability, such that, together with a high performance link, it will allow the comparison of future ground clocks at the few times  $10^{-18}$  level as well as performing a ten-fold improved measurement of the gravitational redshift with respect to ACES. The development towards lattice optical clocks for space will continue within a EU-FP7-funded program with the goal of demonstrating  $1 \cdot 10^{-15} / \tau^{1/2}$  instability and  $< 5 \cdot 10^{-17}$  inaccuracy on a breadboard-type clock by 2014. The development is based on the cooperation within a consortium that includes 8 European groups working on laboratory or transportable lattice clocks.
- 6. European developments towards space optical clocks (ion and neutral species) will profit strongly from the non-space related development of laboratory clocks in many

institutes, with funding by various ESA and non-ESA related agencies. The large number of European groups working on optical clocks demonstrates the deep and widespread interest in this type of instrument, ensures rapid progress and also provides a pool of qualified scientists for space industry to hire for industrial development of space clocks.

## **Recommendations:**

As the PHARAO/ACES development has shown, space optical clock development will be very expensive, and the cost is unlikely to be borne by a single country, nor can the work be performed by a single or a few groups. It is imperative to have a Europe-wide activity, and that the development builds on the already existing knowledge and capabilities of European industry, European scientific laboratories, and uses all suitable existing hardware. Duplications are to be avoided. Only in this way can an efficient use of previous investments and future funding, as well as an efficient and quick progress, be made. If funds for development are limited, and considering a mission in the near future, concentration on the most promising and realistic system for achieving  $1 \cdot 10^{-17}$  inaccuracy and  $1 \cdot 10^{-15}/\tau^{1/2}$  instability is required. In view of this, we recommend:

- An efficient use of available knowledge resources and previous investments.
- An efficient coordination between the activities of research groups in various countries, and the national agencies and ESA, so as to allow rapid progress.
- First performing the technology development on items that are already wellestablished in laboratories as well as commercial off the shelf, and are generic to space versions of optical clocks:
  - The space-qualification of the diodes, fibers, and crystals and coatings for clock, cooling, and manipulation lasers
  - The clock laser subsystem (incl. reference cavity) with  $< 5 \cdot 10^{-16}$  instability
  - The laser frequency stabilization, frequency control and power control units.

These activities are suitable for being carried out in industry, building on existing experience with diode laser chips, external cavity diode laser subsystems, frequency stabilization, and optical benches. They can be funded in a GSTP or a similar technology development program.

- The development of the atomics package should follow as a second, later step, taking advantage of significant conceptual improvements, tests and characterizations that are on-going or planned in research labs towards reaching the above performance goals
- As a third step, space technology development for a frequency comb with performance compatible with the above clock specifications is required.
- The above technology developments should take into account ongoing laboratory developments on new laser technologies (miniature high-power lasers, micro-optics, integrated optics, micro-combs) as they may lead to improved performance or more advantageous mass, power and volume budgets for space use.

# **Development of optical links**

All space missions use electromagnetic links for navigation, time/frequency transfer, and communication. Generally speaking, the carrier frequency, the modulation frequency and the modulation method (amplitude or phase modulation) all play an essential role in the design and success of the link and therefore the mission. In the radio domain the evolution of the last decades has been marked by a continuous increase in frequency from a few GHz to 30 GHz

and more (Ka band) and by the increased use of multifrequency links to mitigate dispersive effects (solar corona, ionosphere). That evolution was accompanied by a corresponding increase of modulation frequency and increased use of phase/frequency modulation (rather than amplitude modulation). The reason for that development is the rapid gain in signal to noise ratio with increasing frequency and the corresponding improvements in measurement precision and data rates. A high-performance link for clock comparisons and time transfer experiments is presently under development in the ACES mission. ACES MWL (MicroWave Link) is a two-way two-frequency (Ku-band and S-band) system that will allow comparison of remote clocks to a frequency uncertainty below 1·10<sup>-17</sup> after one day of integration time. MWL technology, presently developed and tested to engineering model level, is widely applicable on Earth orbiting satellites, offering the major advantage of being insensitive to weather conditions. Over large distances, the limits of radio links are imposed by the required power which requires large antennas with corresponding difficulties on the control of the antenna motion (vibrations etc.) and thermal noise.

The future development of high performance links will most likely follow the evolution of the last decades, i.e. the increase of carrier and modulation frequencies. In this perspective a major technological step is in progress, with the passage from radio to optical frequencies corresponding to a frequency leap of about 5 orders of magnitude. The first step of this change has been achieved by the use of pulsed lasers for satellite and lunar laser ranging, and satellite altimetry. That method has been recently adapted for time/frequency transfer (Time Transfer by Laser Light, T2L2) which is presently being validated onboard the JASON-2 satellite. The basic principle of pulsed optical links is an amplitude modulated optical carrier frequency with typical pulse durations of order  $10^{-11}$  s. This corresponds to a gain of about one to two orders of magnitude with respect to the carrier period of radio links, with a corresponding increase in precision (millimeter ranging). It is expected that optical links will evolve towards the direct use of the optical carrier ( $10^{14}$  Hz) with a potential gain of another 4 orders of magnitude in Doppler tracking and frequency transfer. The phase modulation of that carrier will allow absolute distance measurements and time transfer, additionally to high rate data transfer.

That development is naturally paralleled by the present and expected improvements of clocks, in particular in the optical domain, on ground and in space. Best ground optical clocks already reach uncertainties of  $\leq 10^{-17}$ , and are expected to further improve. Efforts for the development of space optical clocks are under way (see section B.4). To compare such clocks in distant laboratories on the ground, or ground to space, present radio links via satellites show insufficient performance. In Earth orbit (ISS), the ACES MWL (0.3 ps precision) will require about 1 day integration time to reach the sub- $10^{-17}$  level of the best present optical clocks. An improved version of the ACES MWL for an Earth orbiting satellite is projected to be capable of  $1 \cdot 10^{-18}$  inaccuracy after a few days of integration. However, over interplanetary distances no such method exists or is foreseen.

On the ground, for short to medium distances (up to about 200 km) recently developed methods use optical fibre links with a direct measurement of the optical carrier frequency. Such links have demonstrated sufficient performance for present and future optical clocks. However they are limited to relatively short distances and unusable for clocks onboard terrestrial and interplanetary spacecraft. Extending those methods to free space propagation would open the way to applications not only in fundamental physics, but also in navigation, Earth observation, solar system science, and telecommunications.

Several methods for the realisation of high performance optical links are being investigated in Europe at present. T2L2 is a pulsed system derived from satellite laser ranging, and presently in the process of validation onboard Jason2 (launched in June 2008). A project for an interplanetary version of T2L2, called TIPO (*Télémétrie Inter Planétaire Optique*), is based on the same principle but in a one-way configuration (although generalizable to the two-way case). The T2M project (Télémétrie laser à 2 Modes) is developed at the Observatoire de la Côte d'Azur with the aim of absolute distance determination between two satellites separated by up to 1000 km. It is a two-way link that uses the beat note between two laser-modes separated by a radio-frequency. In the medium term we expect the realisation of phase coherent optical links using directly the optical carrier in a two-way configuration, similarly to existing fibre links (and in analogy to the optical interferometry of LISA). This requires an onboard laser and an onboard optical phase coherent transponder and/or an onboard optical clock. The main limiting effect is expected to arise from turbulence when crossing the Earth's atmosphere. First experiments to study those limitations have been carried out in a collaboration between Paris and Côte d'Azur observatories with CNES support, showing the feasibility of such links through the atmosphere, and demonstrating the high potential for navigation and long distance clock comparisons at the level required by the best optical clocks today and in the foreseeable future. Phase coherent links are also being explored for their potential applications in telecommunications, a prototype is presently being tested by DLR onboard the TerraSAR-X satellite.

It should be stressed that at present Europe has a considerable advantage in optical link technologies for navigation and long distance clock comparisons, allowing for a rapid development of that technology for space applications, in particular in fundamental physics. It is recommended to actively continue the development of high performance links in Europe, working towards the implementation of such links on existing and future space platforms and missions.

#### Development plan for matter-wave interferometer

Atomic quantum sensors based on matter wave interferometry, are capable of detecting very small accelerations and rotations. For example, state-of-the-art atom accelerometers have a sensitivity of  $10^{-9} \text{ m/s}^2/\sqrt{\text{Hz}}$  and their accuracy limit, yet to be demonstrated on long term gravimetric data acquisition, has proven to be limited by gravitational background noise. These instruments reach their ultimate performance in space, where the long interaction times achievable in a freely falling laboratory improve their sensitivity by at least two orders of magnitude and the possibility to use dedicated drag-free platforms enables the isolation of the sensor to exceed the ground-based background accuracy limit.

Cold atom sensors in space may enable new classes of experiments such as testing gravitational inverse-square law at distances of a few microns, the universality of free fall and others. Matter-wave interferometer techniques may lead to radically new tests of the equivalence principle using atoms as nearly perfect test masses, measurements of the relativistic frame-dragging precession, the value of  $G_N$  and other tests of general relativity. Furthermore, cold atom quantum sensors have excellent sensitivity for absolute measurement of gravity, gravity gradients and magnetic fields as well as Earth rotation, and therefore find application in Earth sciences and in Earth-observing facilities.

Today, a new generation of high performance quantum sensors (ultra-stable atomic clocks, accelerometers, gyroscopes, gravimeters, gravity gradiometers, etc.) is surpassing previous state of the art instruments. They represent a key technology for accurate frequency measurements and ultra-precise monitoring of accelerations and rotations. In addition, studies on ultra-cold atoms, molecules and degenerate quantum gases (Bose-Einstein condensates, Fermi gases, and Bose- Fermi mixtures) are also steadily progressing. Bose-Einstein condensates (BEC) provides gases in the sub-nanokelvin range with extremely low velocities (i.e., at the micron per second level), that are ideally suited for experiments in a microgravity environment.

Because of the anticipated strong impact of these new devices on the entire area of precision measurements, the development of quantum technologies for space applications needs an increased activity.

On ground, many programs formed by large teams are already going on in Europe : starting from transportable sensors built as demonstrators to be tested at low inertial noise sites, more ambitious experiments are designed to be operated on parabolic flights and sounding rockets.

Today, Europe, with the support of ESA as well as national space agencies, is leading the studies towards these applications. The first step was the HYPER (hyper-precision cold atom interferometry in space) proposal led by a European consortium and submitted to ESA in 2000. The proposal consisted in 2 atomic gyroscopes to measure the time dependence of the gravitomagnetic effect as well as to verify the equivalence principle. The HYPER assessment study, followed by an Industrial System Level Study, demonstrated the feasibility of the mission but the technique of cold atoms was not considered mature enough for a space mission.

In the last decade several initiatives in Europe and the US aim to demonstrate the technological feasibility of cold atom sensors. On ground, many programs formed by large teams are already going on: starting from transportable sensors built as demonstrators to be tested at low inertial noise sites. In particular:

- A German pilot project to develop a mobile BEC platform for microgravity experiments in the drop tower and during parabolic flights, has been running since January 2004. The QUANTUS team, currently comprising 13 Institutions, realised a compact facility which achieved for the first time a Rubidium BEC in the extended free fall at the drop tower in Bremen. The facility permits the study of the generation and outcoupling of BEC in microgravity, decoherence and atom interferometry as well as opening an avenue to perform atom-optical experiments with ultra-cold gases, e.g. quantum reflection, in a new parameter range. The facility could represent a prototype for a sounding rocket mission.
- A French research and technology project to develop a transportable two-species atom interferometer for parabolic flights, has been running since 2004. The ICE team, comprising 3 institutions with a well established expertise in space components, operates a cold atom light pulse interferometer in aircraft parabolic flights, which was recently successfully tested and demonstrates the operation of an airborne and 0-g atom interferometer. It will be used to develop the future generation of air/spaceborne atom inertial sensors, as well as the relevant additional subsystems to operate the sensor in the space environment.

All these programs, along with the demonstration of European leadership in compact and airborne cold atom technology, helped to identify and develop relevant technologies for future space atom interferometers: development of compact laser sources, fully integrated optics optical benches, radiofrequency reference, and vacuum components ...

An effort to combine these advances is sponsored by ESA through "Space Atom Interferometers" (SAI), presently under development for a flight opportunity on the ISS in the 2020 timeframe. The SAI consortium joined eleven leading European groups for realizing a transportable atomic accelerometer. A prototype for a space-compatible inertial quantum sensor is presently under development within SAI. The instrument will be used for testing the device at system and subsystem level, and for exploring new schemes based for example on quantum degenerate gases as source for the interferometer. Additionally, it will investigate the realistically expected performance limits and potential scientific applications in a microgravity environment considering all aspects of quantum, relativistic and metrological sciences. The resulting set-up could be tested in both the QUANTUS and the ICE facility, thus providing the community with a wide range of validation and tests. These studies will define the instrument design for a test of the Weak Equivalence Principle on the ISS.

**Future developments on ground**: Ground based experiments can still provide, in addition to the microgravity facilities, useful environments to verify the bias stability and the long term performance of the atom sensors. It will be of particular interest to operate the devices at very low-noise facilities e.g. environment similar or better to that where the Einstein telescope will be operated. It will be of particular interest to access underground facilities for instance. In addition to the first demonstration in parabolic flight, further efforts should be made to operate ultra-cold atom sensors in a microgravity environment such as the drop tower, parabolic flights and very soon, sounding rockets. Because development cycles on ground-based facilities (either in a plane or in a drop tower) can be short enough to offer rapid technological evolution for these future sensors, this will allow for a rapid cost-effective development of the future space sensors. It will also offer the possibility to explore most of the atom-sensors related science objectives at an intermediate level of precision. Precision drag-free space-born applications will strive for extending the time of free fall towards regimes where nanokelvin cold atoms are a prerequisite.

**Technology developments for and in space**: The recent advances in the three programs mentioned above show that many subsystems are already in a very advanced stage, where no further scientific investigation is necessary. For instance, two optical bench technologies have been demonstrated for their ability to sustain the high vibrations, pressure and temperature variations encountered in the drop tower or the 0-g flights. In addition, the PHARAO technology could be easily adapted to such instruments. Therefore, a technology program should rapidly focus on the development of space proof optical benches for future atom sensors. Indeed, the laser cooling and atom manipulation bench will be at the core of any future instruments, and its miniaturization will be a key to extend the scope of its utilizations in space. Such a compact cooling bench could actually rapidly be tested on a first sounding rocket mission. Similar technological development could already be funded for high precision frequency references.

Rapidly in the future, it will be efficient to perform a differential measurement between two inertial sensors using atoms of different mass and interrogation wavelength. Even for large vibrational noise, and large interrogation times, the measurement of the differential phase shift, i.e. the acceleration difference can be measured to a high precision. Although deploying atom interferometric inertial sensors on dedicated orbital platforms for next-generation tests of the UFF will increase the measurement sensitivity at the price of an increased sensitivity to vibrational noise, the use of fast-convergence estimators in the differential acceleration estimate will help to reject this acceleration noise and thus to relax the requirement on drag-free vibration isolation performance. Hence, a one year mission on the ISS could reach a target accuracy of  $\eta \sim 8 \cdot 10^{-15}$ , close to that of the project MICROSCOPE, but with quantum objects and no specific drag-free platform.

## **Recommendations:**

The technology development on cold atom sensor should focus on:

- Ground based experiments to test the accuracy of atom interferometers.
- Advanced technology development of relevant subsystems such as laser bench, frequency reference. These technological developments could be done in coordination with the development of compact and/or advanced atomic clocks.

- Operation of atom interferometer under environments such as drop towers or parabolic flights and future sounding rocket mission.
- Bridging the accuracy gap between space missions and ground-based missions.
- Exploring the quantum tests of the equivalence principle on the ISS.

## Technology developments for ultra high energy cosmic rays

Work in Germany and Russia is under way with the goal of developing advanced Si-Photomultipliers (SiPM) for space missions dedicated to study UHECR. The SiPM devices offer low weight, very low power consumption ( $< 50 \text{ W m}^{-2}$ ) and compactness and would allow the threshold for the detection of UHECR to be pushed at least as low as  $10^{19} \text{ eV}$ . Currently the photon detection efficiency of SiPMs is 45% and it seems possible to raise this to 70%. Technological effort from ESA is highly desirable to qualify these devices for space applications and to set up a framework with European Industry for mass production. It is likely that there would be spin-off for applications in other fields including quantum optics, communications and medicine.

# C-4. The community and its organization

The community working in the field of fundamental physics is rich and diverse. Originating from a wide variety of communities –gravitation, astrophysics and cosmology, Earth and planetary science, high energy physics and astroparticle physics, optics, cold atoms, solid state physics–, it involves many different activities: from engineers working on new technologies to theorists studying the latest theories of fundamental interactions, from specialists of metrology to physicists conceiving cosmic particle detectors, ...

Theorists represent an important part of the community, which might not be immediately taken into account when one is thinking about the space program. But theorists play a very significant role in providing the necessary framework for the science case of proposed missions. Theoretical predictions are at the heart of experimentation and vice versa. They guide our interest and curiosity and are crucial for identifying the measurable quantities and optimizing measurement procedures. They are important for example to narrow down the search and identify at which level one may expect violations of the fundamental laws, in which mass and coupling range one may expect new fundamental constituents.

The fundamental physics community already includes a rich component of dedicated theorists. Their efforts should be supported as well when one thinks of the space program. Moreover, one should aim at involving an even broader fraction of the theoretical community at large, in particular reaching out the large high energy physics community. There is a strong interest on their part for the issues relevant for the fundamental physics space program, but little information on the actual program and on the needs of the program. In order to enhance the awareness of this community, it is thus proposed to reinstate the series of joint CERN-ESA- ESO workshops, with a special focus on fundamental physics as defined in the present roadmap.

Fundamental physics often requires a very specific technical expertise which cannot be acquired in a few years. Space requires on the other hand the development of competence in quality assurance, integration and testing. From this point of view, close cooperation and interchange between research institutes, space agencies, and space industries becomes of key importance for accelerating the necessary transfer of knowledge, vital for any successful space project. In particular,

- Space agencies and industries need to acquire knowledge in cutting-edge research, technology, and measurement methodology, based on the expertise of scientific institutes across Europe. This includes the understanding of the physical processes at the basis of precision measurements and precision instruments.
- Research institutes need to develop expertise in space missions and space technologies. This includes a profound understanding of all the challenges and the limitations that a space project brings along.

Given the technological challenges of the field of fundamental physics, it is important that, very early in the projects, industry and academic labs be closely associated.

Because of the specific character of fundamental physics technologies, the Advisory Team suggests that yearly or biennial meetings be organized by ESA between the space agencies, research institutes and the industry in order to monitor the progress achieved in the technological readiness of key technologies, to identify and remedy any show stoppers and to devise common strategies for developing new technologies.

This roadmap appears at a time where a new advisory structure is set up at ESA. In the new scheme, working groups advise all senior advisory groups. Advice on the field of fundamental physics is expected to come from the Physical Sciences Working Group (PSWG). The Advisory Team acknowledges that this new structure fits well the rich array of applications of fundamental physics. It is however concerned about the resulting reduced number of fundamental physics experts, leading to a lack of the necessary breadth and depth of competence in the field. It also regrets the absence of explicit reference to fundamental physics in the naming of the working groups. It stresses the importance of keeping an organic link with the Science and Robotic Exploration (SRE) Directorate and its advisory group, the Space Science Advisory Group (SSAC). And it considers extremely important that there is a fair representation of the fundamental physics community within the SSAC.

# C-5. A set of recommendations

Our recommendations for future free flyer missions are summarized as follows:

- It is of vital importance to the field of fundamental physics that the missions presently approved (LISA PathFinder, ACES and MICROSCOPE) are launched with no further delay.
- The LISA mission is central to fundamental physics, both through its scientific program and the technologies developed for its completion.
- The Advisory Team supports the concept of an M-mission with an optical clock with an uncertainty of  $1 \cdot 10^{-17}$ , and a link allowing the comparison of such a clock to ground optical clocks at the same level of uncertainty and allowing comparisons of clocks on ground at the  $1 \cdot 10^{-18}$  level. This will allow a highly accurate test of the structure of space-time by testing the gravitational redshift at the inaccuracy level of approximately 1 part in  $10^9$ , in addition setting a corresponding limit to a possible spatial variation of the fundamental constants. This represents an approximately  $10^3$  fold improvement compared to ACES or potential future ground results. The mission may be considered with two options, a (highly elliptical) high Earth orbit or an inner solar system orbit (approaching the sun to about the distance of Mercury). The latter option would provide sensitivity to effects of second-order in the gravitational potential. Moreover, it could in addition enable a Shapiro time delay test, measuring the  $\gamma$  parameter of post-Newtonian gravity theories at the inaccuracy level of 1 part in  $10^7$ , a hundredfold improvement. The mission also provides the opportunity for

improved tests of Lorentz invariance, and provides important science results in other fields (geodesy, time metrology).

In the context of the next M call in 2010, it might be important to consider several options for the clock: microwave clock (of PHARAO type), ion or neutral atom optical clock. The Advisory Team considers that the first (minimal) option would already provide a significant gain in accuracy, whilst the other options would provide the full performance discussed above.

- A test of the weak equivalence principle with inertial sensors, at the level of 10<sup>-17</sup> or better, would provide an important test for many theories proposed beyond the Standard Model and General Relativity. For candidate mission concepts to be successful in the next M call, it is important that the instrument sensitivity on ground be compatible with the performance anticipated in space. This includes pushing measurements of systematic error sources and stray force noise, in addition to readout noise, near to the levels needed in space. Matter wave interferometry could represent a very interesting alternative to the use of macroscopic test masses, especially if a violation is observed by MICROSCOPE or other experiments.
- The Advisory Team acknowledges the strong interest in testing gravity at all scales, but considers that the complexity, cost, and technological difficulties of a mission to the outer solar system do not warrant a dedicated fundamental physics mission. Instead, the Advisory Team supports and recommends a mission to the outer solar system that combines fundamental physics and planetary science objectives. In such a mission the fundamental physics instruments are likely to impose stringent constraints on spacecraft and mission design and need to be included in the mission design at an early stage.
- The rich activity in the field of space detection of high energy particles, especially in connection with the identification of dark matter, justifies a need for a new generation of space experiments. The Advisory Team is confident that the community will make the relevant proposals once all missions presently designed will have been launched and have provided their first results.

Because experimental developments on the International Space Station are important to the field of fundamental physics, we make the following recommendations:

- The Advisory Team supports the continuation of the development of the ISS mission "Space Optical Clocks" (SOC) with lattice optical clocks that aims at improving the Earth gravitational redshift measurement, Local Position Invariance test, and ground clock comparison accuracy by one order of magnitude compared to ACES. The technology developments required for this mission and for a M clock mission will have significant overlap.
- The strong technology development program on atom interferometry sensors, presently undertaken in drop towers, parabolic flights, sounding rockets and in the ISS should be vigorously pursued. These sensors have to be tested during the extended free fall, where they approach the targeted sensitivity. The outcome of tests on the Space Station or on other adequate platform are considered as milestones for missions beyond 2020 targeting tests of the principle of equivalence better than 1 part in 10<sup>17</sup>. The Advisory Team thus supports the continuation of the ISS mission "Space Atom Interferometer" (SAI).
- The Advisory Team supports the active participation of the European community in ultra-high energy cosmic rays in the Japanese mission JEM-EUSO on the Japanese module of the ISS. This is an excellent opportunity to test the possibility of detecting such cosmic rays from space. If successful, this would open the road to an even higher

statistics of cosmic rays of the highest energy.

As far as short-term technology developments are concerned:

- A strong technology program should be continued in order to bring the LISA mission closer to its completion.
- A strong technology development program necessary for a M mission with 10<sup>-17</sup> space clocks should be implemented, building on existing knowledge in European research labs and industry, in particular on the ACES heritage. We recommend concentrating on the most promising and realistic clock and first developing space versions of the already well established optics and laser components and subsystems, followed by the atomics package and the frequency comb. In parallel, the appropriate space-to-ground link technology should be developed.
- We recommend advancing the technology of inertial sensors with a high bias stability at the lowest Fourier frequencies and a sensitivity better than  $10^{-11}$  m/s<sup>2</sup>/ $\sqrt{Hz}$  (atom interferometry sensors or other) because of the high interest for many space applications such as planetary gravitational observations, gravity in our solar system as well as for deep space navigation. Therefore, the required developments to advance this technology should be supported.

Regarding the organization of the community, we make the following recommendations:

- Because of the specific character of fundamental physics technologies, the Advisory Team suggests that yearly or biennial meetings be organized by ESA between the space agencies, research institutes and the industry in order to monitor the progress achieved in the technological readiness of key fundamental physics technologies, to identify and remedy any show stopper and to devise common strategies for developing new technologies.
- The Advisory Team recognises the close links with other science fields, in particular astrophysics and solar system science and recommends active exchange of ideas and collaboration in the proposal stage of new (space) projects.
- The Advisory Team proposes to revive the CERN-ESA-ESO workshops with a special focus on fundamental physics issues.
- The Advisory Team acknowledges the new advisory structure of ESA, where the Fundamental Physics Advisory Group has been integrated into the already existing Physical Sciences Working Group. It stresses the importance of the connection between this renovated PSWG group and the senior advisory group SSAC. It also considers as very important for the fairness of future mission selections that there is a sufficient representation of the fundamental physics community within the SSAC.

# List of acronyms

| ACES:             | Atomic Clock Ensemble in Space                                                 |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------|--|--|--|--|
| AMS:              | Alpha Magnetic Spectrometer                                                    |  |  |  |  |
| ATV:              | Automated Transfer Vehicle                                                     |  |  |  |  |
| BBO:              | Big Bang Observer                                                              |  |  |  |  |
| BEC:              | Bose Einstein Condensate                                                       |  |  |  |  |
| CHAMP:            | CHAllenging Minisatellite Payload                                              |  |  |  |  |
| CMB:              | Cosmic Microwave Background                                                    |  |  |  |  |
| CNES:             | Centre National d'Etudes Spatiales                                             |  |  |  |  |
| CTA:              | Cherenkov Telescope Array                                                      |  |  |  |  |
| CV:               | Cosmic Vision                                                                  |  |  |  |  |
| DECIGO:           | DECi-hertz Interferometer Gravitational wave Observatory                       |  |  |  |  |
| DLR:              | Deutsches Zentrum für Luft- und Raumfahrt                                      |  |  |  |  |
| ELIPS:            | European program for Life and Physical Sciences and applications utilising the |  |  |  |  |
|                   | International Space Station                                                    |  |  |  |  |
| ELT:              | Extremely Large Telescope                                                      |  |  |  |  |
| EMRI:             | Extreme Mass Ratio Inspiral                                                    |  |  |  |  |
| ET:               | Einstein Telescope                                                             |  |  |  |  |
| EU:               | European Union                                                                 |  |  |  |  |
| FEEP:             | Field Emission Electric Propulsion                                             |  |  |  |  |
| FPR-AT:           | Fundamental Physics Roadmap Advisory Team                                      |  |  |  |  |
| GAIA:             | Global Astrometric Interferometer for Astrophysics                             |  |  |  |  |
| GAP:              | Gravity Advanced Package                                                       |  |  |  |  |
| GG:               | Galileo Galilei                                                                |  |  |  |  |
| GLONASS:          | GLObal'naya NAvigatsionnaya Sputnikovaya Sistema                               |  |  |  |  |
| GLUE:             | Goldstone Lunar Ultra-high energy neutrino Experiment                          |  |  |  |  |
| GNSS:             | Global Navigation Satellite System                                             |  |  |  |  |
| GOCE:             | Gravity and Ocean Circulation Explorer                                         |  |  |  |  |
| GP-A:             | Gravity Probe A                                                                |  |  |  |  |
| <b>GP-B</b> :     | Gravity Probe B                                                                |  |  |  |  |
| GPS:              | Global Positioning System                                                      |  |  |  |  |
| GRACE:            | Gravity Recovery And Climate Experiment                                        |  |  |  |  |
| GRB:              | Gamma Ray Burst                                                                |  |  |  |  |
| GSTP:             | General Support Technology Program                                             |  |  |  |  |
| GZK:              | Greisen-Zatsepin-Kuzmin                                                        |  |  |  |  |
| HESS:             | High Energy Stereoscopic System                                                |  |  |  |  |
| HYPER:            | Hyper-Precision Cold Atom Interferometry in Space                              |  |  |  |  |
| IXO:              | International X-ray Observatory                                                |  |  |  |  |
| <b>JEM-EUSO</b> : | Japanese Experiment Module – Extreme Universe Space Observatory                |  |  |  |  |
| LCGT:             | Large Cryogenic Gravitational wave Telescope                                   |  |  |  |  |
| LHC:              | Large Hadron Collider                                                          |  |  |  |  |
| LIGO:             | Laser Interferometer Gravitational wave Observatory                            |  |  |  |  |
| LISA:             | Laser Interferometer Space Antenna                                             |  |  |  |  |
| LLI:              | Local Lorentz Invariance                                                       |  |  |  |  |
| LLR:              | Lunar Laser Ranging                                                            |  |  |  |  |
| LPI:              | Local Position Invariance                                                      |  |  |  |  |
| MWL:              | MicroWave Link                                                                 |  |  |  |  |

| NIST:          | National Institute of Standards and Technology                   |
|----------------|------------------------------------------------------------------|
| NPL:           | National Physical Laboratory                                     |
| <b>ONERA</b> : | Office National d'Etudes et de Recherches Aérospatiales          |
| PHARAO:        | Projet d'Horloge Atomique par Refroidissement d'Atomes en Orbite |
| PPN:           | Parametrized Post-Newtonian (formalism)                          |
| PSWG:          | Physical Sciences Working Group                                  |
| PTB:           | Physikalish-Technische Bugdesansalt                              |
| QA:            | Quality Assurance                                                |
| RTG:           | Radioisotope Thermoelectric Generator                            |
| SiPM:          | Silicon PhotoMultiplier                                          |
| SAI:           | Space Atom Interferometers                                       |
| SHM:           | Space Hydrogen Maser                                             |
| SKA:           | Square Kilometer Array                                           |
| SOC:           | Space Optical Clocks                                             |
| SQUID:         | Superconducting Quantum Interference Device                      |
| SRE:           | Science and Robotic Exploration                                  |
| SSAC:          | Space Science Advisory Committee                                 |
| STEP:          | Satellite Test of the Equivalence Principle                      |
| SYRTE:         | SYstèmes de Référence Temps-Espace                               |
| TIPO:          | Télémétrie Inter Planétaire Optique                              |
| TRL:           | Technology Readiness Level                                       |
| <b>T2L2</b> :  | Time Transfer by Laser Link                                      |
| <b>T2M</b> :   | Télémétrie laser à 2 Modes                                       |
| UFF:           | Universality of Free Fall                                        |
| UHECR:         | Ultra-High Energy Cosmic Rays                                    |
| ULE:           | Ultra Low Expansion                                              |
| VLBI:          | Very Long Baseline Interferometry                                |
| WEP:           | Weak Equivalence Principle                                       |
| wimp:          | weakly interacting massive particle                              |
|                |                                                                  |