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Era of Major Reorganization of Planetary-scale processes

MARS

using Hartmann & Neukum (2001) epoch boundaries, modified by Nimmo & Tanaka (2005)
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Distinct Geologic Units in Stratigraphic
Relationship and Relative Ages

Do they Mineral Assemblages and Geologic
Contexts Define Habitable Boundary
Conditions?
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NILI FOSSAE/NE SYRTIS STRATIGRAPHY
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Gomes et al., 2005

~ AL ~

7))

< ji=

<L Volcaniq Marg global

= activity p | chagge

, I

neutral pHj |_a|:/'d/'¢
clays sylfates
hyllosian | th}

Stratigraphy of Nili
Fossae/NE Syrtis
records multiple
aqueous environments
from the Middle
Noachian to Early
Hesperian
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*» Trough development

Phyllosilicate Formation

Carbonate deposits

) Kaolinite layer formation

Sulfate Formation
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modified after Mustard et al., JGR 2009
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What are the processes and NILI FOSSAE/NE SYRTIS STRATIGRAPHY
environments that formed early } Widespread Gradation
phyllosilicates?

How did conditions change with ** Trough development
Carbonate formation? Phyllosilicate Formation
Carbonate deposits
Kaolinite layer formation
How rapid was the transition to a Sulfate Formation
more acidic, sulfate (jarosite) sigis | Olivine Syrtis Major

Unit Volcanism

forming era? e

4 | Time
E/M Early Hesp. (~3.7 Ga; Hiesinger & Head, 2004)

Noachian modified after Mustard et al., JGR 2009
3.85-3.96 Ga

A Traverse Up the Section

Hesperian
Syrtis Mafics : . . .
Generalized Stratigraphic Section

Layered
Sulfates

Mg-carbonate +
Contemporaneous olivine unit

with Isidis

Fe/Mg-smectite bearing Noachian basement

Pre-Isidis
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Noachian Basement exposed on the plains shows breccia blocks of unaltered

pyroxene-bearing rocks set in a matrix of Fe/Mg phyIIosncate and laced with raised
ridges
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Distinct Mafic to Ultramafic Deposit (regional in scope) that is post
Isidis in age but pre-fossae: S i
Impact melt or ultramafic lava flows sz
Rests directly on Fe/Mg altered basement_"
The base of the deposit hosts the
Mg-carbonate deposits

Mg-carbonate +
olivine unit
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Plains Deposits Show
Kaolinite Mineral
Deposits Indicative of
Surface Water

(Offset for clarity)
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R: BD2200, G: D2300, B: BD2500
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Kaolinite, carbonate, and serpentine mineralization
e Chemistry controlled by precursor mineralogy

partial enhanced leaching Kaolin group mineral

alteration loss of Ca2*, Mg?*, Fe?* ions Al,Si,O,(OH),

(Analog: soil formation under intermittantly wet conditions, Hawaii, Italy)

-=0Of=--

olivine partial HT _ partial low-  carbonate

(Fe,Mg),SiO, ;"gag;;j (Fe,Mg),Si,05(OH), | Tateraton” 1o Fe)cO,

O
T
<
=
o
5
=

(Analog: weathering serpentinites in Oman, N. California)

e Carbonate(/Serpentine): Carbonate alteration mostly related to near-
surface hydrology? Or mostly generated by hydrothermal systems?

e H, an energy source for organisms, potential for methane
production during serpentine formation

e Kaolinite: Leaching from an active hydrologic system?




/ Layered Sequence neath‘SyrtiS Lavas
4 = How do minefal assemblages change with
' ocation?
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Beneath the capping lava is a 500 m stack of layered rock that appears
sedimentary

Hesperian
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Syrtis Major Materials, capping

topographic low

CTX+HIRISE over MOLA -
topography perspective view, 7x




1. NE Syrtis inflow




Noachian to Hesperian Transition: An Acid-Alkaline Processes

This Noachian-Hesperian stratigraphy transitions from ancient phyllosilicate to carbonate (alkaline) and kaolinite to
sulfate (acidic)

Lavas emplaced in a volatile-rich environment overlie (sedimentary?) sulfate-bearing deposits that include jarosite and
polyhydrated sulfate. .o There is evidence for circulation of fluids by heat of lava source and thus
ol o hydrothermal systems in a volcano-ice environment
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Clear stratigraphy of unaltered volcanic units, sulfates,
carbonate-serpentine-olivine unit and Fe/Mg smectite basement
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Volcanics -~
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Long record of aqueous geochemistry recorded
by alteration minerals
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Layered
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Diversity of Habitable
Environments (1)

e Shallow Subsurface Hydrothermal Systems
— Fe/Mg Phyllosilicate with evidence of fluid flow

e Surface Fluvial Systems

— Network of fluvial channels and low regions showing open
basin lake system (e.g. Jezero)

— Kaolinite in capping rocks indicative of water flow in
regolith-pedogenesis

e Reactant-product Mineral associations

— Olivine => Serpentine: production of H,-CH,
— Olivine => Magnesite (Mg-carbonate)




Diversity of Habitable
Environments (2)

* Volcano-ice Interaction at the Isidis Basin Edge

— Volcanic morphology suggests lava-ice interaction

* Layered Material Beneath Hesperian Lava
— Sulfate rich with polyhydrated and jarosite minerals

— Pre-Syrtis sedimentary deposits (in an area predicted to
have upwelling groundwater (e.g. Andrews-Hanna)

— 'Alteration of Syrtis lava flows

* Transition in preserved habitable environments and
major Mars Environmental Change




