

A potential habitable zone

within the subsurface at the equatorial region on Mars

Alian Wang

Department of Earth and Planetary Sciences Washington University in St. Louis

Content

- Observations at Gusev on Mars;
- Observations at a terrestrial analog site;
- Extrapolation from a thermal model (Mellon et al., 2004);
- Laboratory observations @ low T.

Mars salt-rich subsurface: Low T, high RH, liquid H₂O film → habitable or habited ?

A Spirited Road

Subsurface salty soils

Mainly, Hydrous Sulfates (Mg, Ca, Fe)

Atmospheric (near ground) Temperature Variation

Calculated Variation of Relative Humidity

H₂O vapor pressure (ave): 10⁻² kg/m²

Wang and Ling, 2011

Two distinct layers of salty soils at Tyrone

Wang et al., 2008

Wavelength (nm)

Seven Pancam Observations

Spirit stayed at the same location for 198 sols, 7 measurements took at *almost same local solar time*, w/very *small tau variation* during the most part of 198 sols.

Property change of Fe-sulfate-rich Subsurface salty soil (R_{L2}^* vs. R_{L7}^*)

Selection of AOI \rightarrow salty soils from deeper depth show 434 -753 nm spectral slope reduction.

Johnson et al., 2007 -- One of the major component of yellowish soils is ferricopiapite.

Lab observation #1: Phase transition Pathway Ferricopiapite (21C), Wang et al., 2010

RH	6.60%	11.30%	33.00%	54.10%	58.80%	69.70%	75.40%	85.00%	94.40%	100%
hours										
2	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri
8	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri
20	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri
48	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	ferri, deliq
96	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	ferri, deliq	Deliq
216	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	ferri, deliq	Deliq	Deliq
384	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	ferri, deliq	Deliq	Deliq
552	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	ferri, deliq	Deliq	Deliq
720	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri, Delic	Deliq	Deliq	Deliq
1080	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri, Delic	Deliq	Deliq	Deliq
1992	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri, Delic	Deliq	Deliq	Deliq
3840	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri	Ferri, Delic	Deliq	Deliq	Deliq
8664	Ferri +Am	Ferri	Ferri+Rhor	Ferri	Ferri	Ferri+Rhor	Ferri, Delic	Deliq	Deliq	Deliq
10488	UK#9	UK#9	Ferri+Rhor	Ferri, para	Ferri	Ferri	Ferri, Delic	Deliq	Deliq	Deliq
14520	Ferri	Ferri	Ferri	Ferri, para	Ferri	UK#20	Ferri, Delic	Deliq	Deliq	Deliq
17688	Ferri	Ferri+Rhor	Ferri	Ferri, para	Ferri, 7w	Ferri	Deliq	Deliq	Deliq	Deliq
24912	Ferri	Ferri	Rhom, Fer	P9w, Ferri	P9w, Ferri	Ferri	Deliq	Deliq	Deliq	Deliq

Ferricopiapite dehydrates through two pathways: pathway #1 → 9w, 7w, rhomboclase (4w); pathway #2 → Amorphous species (5-11w, 14-19w).

Ferricopiapite → Rhomboclase

When the last drop of liquid dried

It will cause the spectral slope reduction from 434 nm to 753 nm (Wang & Ling, 2011)

pathway #1 \rightarrow 9w, 7w, Rhom

pathway #2 – Am (I, II)

The spectral change of Tyrone subsurface soil is consistent with dehydration of ferricopiapite

Terrestrial Analog Site Study (Tibet)

Climate conditions – low P, low T, large ∆T, high UV, & hyperarid

Aridity map of QT : DLT has the highest aridity (AI<0.01)

Qaidam paleolake (Pliocene-early Pleistocene)

Satellite photo of Da Langtan (DLT) area

General View of the area

Satellite photos of DLT w/sampling sites

Sampling through a cross section

Subsurface salts w/high degree of hydration

Highly hydrated salts are preserved in the subsurface of a hyperarid region.

A thermal model by Mellon et al., 2004 T profile in regolith

Ice -rich subsurface: low T_{ave} & small ΔT

Extrapolation of Mellon's model

Atmospheric conditions at the surface have less influence in salt-rich subsurface ; Large quantity of hydrous salts will buffer the RH of the environment

Laboratory observation #2

At -10 °C, a space filled w/MgSO₄.7H₂O RH ~ 96 – 97%

At -10 °C, a space filled w/ferricopiapite RH ~ 75 -79%

W/enough quantity, Highly hydrated salts can keep a high RH within subsurface

Laboratory observation #3

Large stability fields of MgSO₄.7H₂O@low T

Mars -- salt-rich subsurface at equatorial region → Low T, high RH ;

Earth -- subsurface salty layer in a hyperarid region → High RH;

- Thermal model -- A salt-rich subsurface would be less influenced by atmospheric conditions;
- Lab highly hydrated salts can buffer a high RH environment at low T;
- Lab highly hydrated salts have large stability field (RH) at low T.

What about Liquid water...

Laboratory observation #4

26.8w, 32.5w suggest extra 6.8w – 12.5w at grain surfaces

The meaning of extra 6.8w – 12.5w per ferricopiapite molecule

Thin film of liquid H_2O has formed at the grain surfaces of ferricopiapite

Inhabited at QT -- halophiles

Subsurface in equatorial regions on Mars?

Distribution of Water on Mars: Overlap of water operador hydrogen abundances and a shaded relief map derived from MOLA supagraph, Mass percents of water were determined from spithermal means counting train using the Nouron's Spectromene abund Mass (Obyver) between 1bl. 2020.

Reference: Foldman W C., T.H. Protyman, S. Mansio, J. J. Past, D. L. Bich, D. T. Variman, M. T. Melon, A. E. Merager, S. W. Spiper, S. Karanallika, W. V. Bornma, R. C. Tipler, H. O. Faranzo, D. J. Lawrence, and R. L. Tolaz, The global distribution of near-worker behaviour on Singer-worker behaviour. J Appl. 2010. J.

Three data were generated by the Phaseney Science Terms at Los Alamaw, B. Bartackough, D. Boh, D. Delupp, R. Elphie, W. Felderan, H. Fursten, O. Ganzale^a, D. Lawrence, S. Mantor^a, G. McKimey, K. K. Moere, T. Perryrmen, R. Felderan, D. Vasima, and R. Witten. ¹ *Nac o* Observation Web Pyseus, France

The mattine dynamics datased Marci Odyczy a surginosow of the Gamma og Spachmanter andi og instrumenti, ma skulgend sod built by the Las Alamon National Lasborning and is optimated by the University of Aritypor in Taoan. The Marci Odyczy microine is managed by the Jet Prophalion Laboratory.

Habitable?

inhabited?