

JUICE/Laplace Mission Summary & Status

C. Erd JUICE Instrument WS, Darmstadt 9/11/2011

- 1. Feasible JGO s/c as a starting point
 - a. no re-design of s/c necessary
 - b. Changes driven by changes of mission profile (Europa flybys, Jupiter high latitude)
 - c. Model payload left unchanged
- 2. Review and release of updated radiation model used for
 - a. Comparison with JGO baseline
 - b. Evaluation of impact of Europa flyby scenario
- 3. More detailed simulation of radiation exposure
 - a. Shielding approach, background estimates
 - b. Evaluation of possible solar array degradation
- 4. Continuation of technology developments and preparations

From JGO to JUICE: Changes

- 1. No changes to spacecraft configuration and model payload
- 2. Changed mission profile
- 3. Updated radiation environment
- 4. Planetary protection
- 5. Planned next steps and tentative schedule

Baseline Spacecraft

JUICE/Laplace Status | C. Erd | JUICE Instrument WS, Darmstadt | 9/11/2011 | SRE-PA | Slide 4

European Space Agency

ESA UNCLASSIFIED – For Official Use

Spacecraft Configuration – Unchanged

ESA UNCLASSIFIED - For Official Use

JUICE Model Instruments

Total mass: 104 kg

Imaging	
Narrow Angle Camera (NAC)	10 kg
Wide Angle Camera (WAC)	4.5 kg

In situ Fields and Particles	
Magnetometer (MAG)	1.8 kg
Radio and Plasma Wave Instr. (RPWI)	11.2 kg
Particle and Plasma Instr.— Ion Neutral Mass Spectr. (PPI-INMS)	18.2 kg

Spectroscopy	
Visible Infrared Hyperspectral Imaging Spectrometer (VIRHIS)	17 kg
UV Imaging Spectrometer (UVIS)	6.5 kg
Sub-mm Wave Instrument (SWI)	9.7 kg

Sounders & Radio Science		
Laser Altimeter (LA)	11 kg	
Ice Penetrating Radar (IPR)	10 kg	
Radio Science Instrument (JRST+USO)	4 kg	

JUICE/Laplace Status | C. Erd | JUICE Instrument WS, Darmstadt | 9/11/2011 | SRE-PA | Slide 6

JUICE Key Properties for Science Ops

- 1. Power generation and spacecraft pointing
 - a. Ganymede phase:
 - Baseline is yaw steering
 - Temporarily stable nadir pointing (with power saving operations)
 - b. Flybys: any spacecraft orientation
- 2. Simultaneous operations of remote sensing and *in situ* instruments to be studied
- 3. Fixed HGA (>3 m)

Mission Profile

JUICE/Laplace Status | C. Erd | JUICE Instrument WS, Darmstadt | 9/11/2011 | SRE-PA | Slide 8

European Space Agency

ESA UNCLASSIFIED – For Official Use

Mission Profile – Launch and Interplanetary Transfer

	Prev.Baseline (EJSM/JGO)	Baseline JUICE
Launch	March 2020 (June 2022)	June 2022 (Aug 2023)
Launch mass in kg	4212 (4681)	4804
Interplanetary transfer (Launch to Jupiter arrival) in yrs	5.9 (7.3)	7.6 (8.0)
Gravity assist sequence	VEE (EVEE)	EVEE
Jupiter arrival	Feb 2026 (Jun 2029)	Jan 2030 (Aug 2031)
Total ΔV in m/s	1365 (1685)	1284 (1315)
Max. available mass at Jupiter in kg	2680	3140 (3100)

JUICE/Laplace Status | C. Erd | JUICE Instrument WS, Darmstadt | 9/11/2011 | SRE-PA | Slide 9

European Space Agency

Mission Profile – Jupiter Mission Science Phases

- Europa flybys: 2 flybys immediately following each other; same true anomaly of Europa, outer flyby at ~180° long_{Europa}, 400 – 500 km, 36 d
- Callisto flybys to increase of inclination: reaching Jupiter latitudes up to 30°, 11 flybys (200 d)
- 3. Ganymede (polar) phases
 - a. Elliptic phase starting 10,000x200 km, 30 d
 - b. High altitude circular phase 5,000 km, 90 d
 - c. Elliptic phase ending 10,000x200 km, 30 d
 - d. 500 km circular, 102 d
 - e. 200 km circular, 30 d
- 4. Disposal on Ganymede's surface

JUICE/Laplace Mission Timeline

		Baseline	Backup
	Launch	Jun 2022	Aug 2023
	Interplanetary transfer	7.6 yrs	8.0 yrs
	JOI	Jan 2030	Aug 2031
	JOI to Callisto	11 months	
	Arrival at Callisto	Dec 2030	Jul 2032
	Europa Flybys	36 days 60 days	
	Reduction of V _{inf}		
	Start Callisto High Lat Phase	Mar 2031	Oct 2032
	Callisto High Latitude Phase	200 days	
	End Callisto High Latitude Phase	Oct 2031	Apr 2033
	Callisto to Ganymede + Reduction of V_{inf}	11 months	
	GOI	Sep 2032	Mar 2034
	Ganymede Elliptical Phase 1	30 days	
	Ganymede 5000 km circular Phase	90 days	
	Ganymede Elliptical Phase 2	30 days	
	Ganymede alt reduction	Feb 2033	Aug 2034
	Ganymede 500 km circular Phase	102 days	
	Ganymede alt reduction	May 2033	Dec 2034
JUICI ESA	Ganymede 200 km circular Phase	30 days	
-5A	End of mission	Jun 2033	Dec 2034

n Space Agency

Europa Flyby Scenario

- 1. 36 day flyby period from leaving Callisto until return to Callisto
- 2. 2 Europa fly-bys
- First flyby 9.5 days after leaving Callisto
- 4. Second flyby 14 days after the first

Europa Flybys Ground Tracks

Altitude [km]

JUICE/Laplace Status | C. Erd | JUICE Instrument WS, Darmstadt | 9/11/2011 | SRE-PA | Slide 13

European Space Agency

Jupiter High Latitude Phase with Callisto

- 6 swing-bys are necessary to transfer from equatorial to maximum inclination
- The maximum inclination is ~29 deg
- The time to transfer is 100 days (100x2=200 days for the end-to-end transfer)

Callisto Coverage

-90 ∟ -90

-90

European Space Agency

270

90

٠

180

Per: Cir=10*Req/R Arr=Jup->Cal

N

0

Sun elevation (deg)

90

Longitude East (deg)

0

JUICE Mission Profile - Summary

Launch	June 2022 (Aug 2023)
Interplanetary transfer (EVEE)	7.6 (8.0)
Jupiter arrival	Jan 2030 (Aug 2031)
JOI to Callisto	11 mon
2 Europa flybys	36 days
Jupiter high latitude phase	200 days
Callisto to Ganymede	9 mon
Ganymede (polar) 10,000x200 km & 5000 km 500 km circular 200 km circular	150 days 102 days 30 days

Radiation Environment

JUICE/Laplace Status | C. Erd | JUICE Instrument WS, Darmstadt | 9/11/2011 | SRE-PA | Slide 17

European Space Agency

ESA UNCLASSIFIED – For Official Use

Model of the Radiation Environment

- 1. Increase of modelled radiation exposure (2x wrt previous baseline)
- 2. Inclusion of Europa flybys (adds ~20% to total dose)

JUICE/Laplace Status | C. Erd | JUICE Instrument WS, Darmstadt | 9/11/2011 | SRE-PA | Slide 18

Environment Spectra

JUICE/Laplace Status | C. Erd | JUICE Instrument WS, Darmstadt | 9/11/2011 | SRE-PA | Slide 20

European Space Agency

Dose-Depth per Mission Phase

JUICE/Laplace Status | C. Erd | JUICE Instrument WS, Darmstadt | 9/11/2011 | SRE-PA | Slide 21

European Space Agency

Dose per Particle Species

JUICE/Laplace Status | C. Erd | JUICE Instrument WS, Darmstadt | 9/11/2011 | SRE-PA | Slide 22

European Space Agency

ESA UNCLASSIFIED - For Official Use

Cumulative Mission Dose

JUICE/Laplace Status | C. Erd | JUICE Instrument WS, Darmstadt | 9/11/2011 | SRE-PA | Slide 23

European Space Agency

Model of the Radiation Environment

- 1. Increase of radiation environment model (2x wrt previous baseline)
- 2. Inclusion of Europa flybys (adds ~20% to total dose)
- 3. Radiation mitigation
 - a. 3d shielding simulations: reduction of dose by ¹/₂ 1/3 due to geometry from solid sphere to more representative geometry
 - b. 40% (conservative) due to shielding by Ganymede during the low altitude phases (≤500 km): 31% of the total exposure at Ganymede
 - c. Higher shielding mass than during Assessment Phase
 - d. Use of high Z material (Ta) for shielding
 - e. Components tolerance required up to 30 krad
- 4. Radiation environment close to Europa has higher instantaneous flux
 - a. Higher background for sensors
 - b. No severe increase of Single Event Effects (SEE's)

JUICE/Laplace Status | C. Erd | JUICE Instrument WS, Darmstadt | 9/11/2011 | SRE-PA | Slide 24

Planetary Protection

JUICE/Laplace Status | C. Erd | JUICE Instrument WS, Darmstadt | 9/11/2011 | SRE-PA | Slide 25

European Space Agency

ESA UNCLASSIFIED – For Official Use

Planetary Protection: Preliminary Assessment

- 1. Europa flyby requires mission to be in PP Cat III
 - a. Requirement: 10⁻⁴ probability of ocean contamination during mission life and 300 years (in case of failure)
- 2. Probability of collision with Europa (allocations)
 - a. JGO: orbit has too high energy for collision with Europa; very low likelihood assumption from previous study
 - b. Only change with respect to JGO is 2 ballistic Europa flybys
 - Probability of spacecraft failure: ~2×10⁻³ (40 days after 12 years mission)
 - Allocation for likelihood of collision with Europa after failure: <1%
- 3. Requirement of 10⁻⁴ probability appears to be feasible, but full analysis to be performed in next phase including
 - a. Orbit propagation and collision probability analysis
 - b. Failure tree

Approach to Planetary Protection

- 1. Assume that spacecraft reliability can be demonstrated
- 2. Active bioburden reductions are assumed as risk (cost impact)
- 3. Activities in phase A/B1:
 - a. Failure tree analysis and likelihoods
 - b. Quantification of risks
 - c. Consolidation of PP requirements
- 4. Review at preliminary requirements review
- 5. Instruments should follow the same approach

Next Steps & Tentative Schedule

JUICE/Laplace Status | C. Erd | JUICE Instrument WS, Darmstadt | 9/11/2011 | SRE-PA | Slide 28

European Space Agency

ESA UNCLASSIFIED - For Official Use

Next Steps: Plans for Reviews and Milestones

- 1. New issue of Yellow Book ready
- 2. ESA internal review
- 3. Evaluation of reformulated mission by ESA advisory bodies (SSEWG)
- 4. SPC Down-selection
- 5. If down-selection successful
 - a. ITT for industrial Phase A/B1
 - b. Issue of instrument AO

Dec 2011 Nov/Dec 2011

Dec 2011/Jan 2012 Feb 2012

Q2/2012 (tentative) Q2/2012 (tentative)

Tentative Implementation Schedule

JUICE/Laplace Status | C. Erd | JUICE Instrument WS, Darmstadt | 9/11/2011 | SRE-PA | Slide 30

European Space Agency

ESA UNCLASSIFIED - For Official Use

Summary Spacecraft Updates

- 1. Configuration and model payload unchanged
- 2. Increase of radiation exposure balanced by
 - a. Moderate increase of shielding mass by ~50 kg
 - b. High Z shielding material (Ta as opposed to Al)
 - c. Higher component tolerance (up to 30 krad)
 - d. Mitigations justified by preliminary transport simulations
- 3. Minor additional ΔV required for the additional mission options
 - a. Higher Jupiter latitude with Callisto gravity assists
 - b. Europa flybys
- 4. Increased dry mass feasible due to
 - a. Higher launch capability (+360 kg)
 - **b.** Longer interplanetary transfer (reduction of ΔV)
- 5. Mission dry mass margin close to 20%
 - a. No adverse effect on solar panels

Summary for Instruments

- 1. Radiation environment
 - a. 3d transport simulations very important (Monte Carlo)
 - b. Need representative models early
- 2. Planetary protection
 - a. Need estimate for active bioburden reduction as risk
- 3. Resource optimizations important
 - a. Mass criticality