

On the formation of the Martian moons from a circum-Mars accretion disk

Rosenblatt P. and Charnoz S.

46th ESLAB Symposium: Formation and evolution of moons Session 2 – Mechanism of formation: Moons of terrestrial planets June 26th 2012 – ESTEC, Noordwijk, the Netherlands.

The origin of the Martian moons ?

Size: 13.0km x 11.39km x 9.07km

Size: 7.5km x 6.1km x 5.2km

Unlike the Moon of the Earth, the origin of Phobos & Deimos is still an open issue.

> Capture or in-situ ?

1. Arguments for in-situ formation of Phobos & Deimos

Near-equatorial, near-circular orbits around Mars
 (→ formation from a circum-Mars accretion disk)

- Mars Express flybys of Phobos
 - Surface composition: phyllosilicates (*Giuranna et al. 2011*)
 => body may have formed *in-situ* (close to Mars' orbit)
 - Low density => high porosity (Andert, Rosenblatt et al., 2010)
 => consistent with gravitational-aggregates

2. A scenario of in-situ formation of Phobos and Deimos from an accretion disk

Adapted from Craddock R.A., Icarus (2011)

3. Purpose of this work: Origin of Phobos & Deimos consistent with theories of accretion?

✓ Modern theories of accretion : 2 main regimes of accretion.

• (a) **The strong tide regime** => close to the planet ~ Roche Limit

Background :

Accretion of Saturn's small moons (Charnoz et al., 2010) Accretion of the Earth's moon (Canup 2004, Kokubo et al., 2000)

• (b) **The weak tide regime** => farther from the planet

Background :

Accretion of big satellites of Jupiter & Saturn Accretion of planetary embryos (Lissauer 1987, Kokubo 2007, and works from G. Wetherill, S. Weidenschilling, R. Greenberg)

✓ We explore the consequences of these regimes of accretion for the *in-situ* formation of the Martian moons.

1. Accretion in a strong tide regime: basic physics of the disk

✓ This model explains the origin of Saturn's small Moons (*Charnoz et al., 2010*)

2. Accretion in a strong tide regime: Formation of gravitational instabilities

Accretion at the Roche Limit occurs on a short timescale ~ Orbital period <u>Example :</u> moon formation at Saturn's Roche Limit (S. Charnoz, 2008)

3D local particle simulation (500 m x 500 m) (Charnoz S., 2008)

Accretion of disk particule in the area of gravitational influence (or Hill Sphere) of the instability:

 \rightarrow Creation of elongated moons

With shape ~ Hill Sphere shape (Triaxial ellipsoid with axes ratio : 3:2:2)

3. Morphological properties of moons accreted at the Roche Limit

- \Rightarrow Growth of the gravitational aggregate is limited by its Hill Sphere
- \Rightarrow A gravitational-aggregate fills ENTIRELY its Hill sphere

4. Morphological properties of moon accretion at the Roche Limit: Shape of gravitational aggregates

In high-tide accretion regime a gravitational-aggregate fills ENTIRELY its Hill sphere

 \Rightarrow Shape of Hill Sphere \Leftrightarrow Shape of Satellite

\Rightarrow COMPARISON WITH PHOBOS & DEIMOS AXES RATIO:

Phobos	Deimos
Triaxial ellipsoid:	Triaxial ellipsoid:
13.0 km x 11.39 km x 9.07 km	7.5 km x 6.1 km x 5.2 km
Axes ratio: 2.86:2.5:2 (~3:2:2)	Axes ratio: 2.88:2.34:2 (~ 3:2:2)

\Rightarrow Axes ratio 3:2:2 roughly respected

5. Morphological properties of accretion at the Roche Limit: Density of gravitational aggregates

In a high-tide accretion regime a gravitational aggregate fills ENTIRELY its Hill sphere

=> Density of Hill Sphere ⇔ Density of Satellite

Comparison with Phobos/Deimos density:

Density of the Martian moons are compatible with the expected critical density at Mars' Roche limit ! (=2.5 Mars' radii) 6. Putting all things together in a (simple) large scale numerical simulation:

Initial mass of the disk = 10¹⁸ kg (Craddock, 2011)

Viscous spreading of the disk makes it crossing the roche limit

Moonlets form at the Roche limit with a relatively low mass (10¹¹ kg)

The Roche limit (~2.5 Mars' radii)

The disk is pushed inward by the moonlets receding back to Mars.

Moonlets accrete together, reaching the mass of Phobos (10¹⁶ kg)

In less than 1 Gyr, the disk disappeared and all the moonlets have fallen back to Mars.

Inconsistent with 4 Gy old Martian moon system

Main conclusion about the strong tide regime of accretion

• <u>GOOD:</u>

Moonlets with the shape & density of Phobos & Deimos can be formed in a Martian gravitationally unstable accretion disk (strong-tide regime of accretion) → consistent with Craddock (2011)

<u>BAD:</u>

This moonlet system is inconsistent with a 4 Gy old Martian satellite system and with Deimos' location (> synchronous orbit) → inconsistent with Craddock (2011)

- A less massive disk would last longer but would form less massive moonlets and could not still form a Deimos at its current location.
- Needs to explore the weak tide regime of accretion (more consistent with Deimos' location, ...)

1. Weak tide regime (far from the planet): ~planet like accretion in a dis

- \checkmark The Hill sphere is much larger than the body size.
- ✓ Accretion is driven by two-bodies encounter.

Hypothesis :

Disk extends to the synchronous orbit (~6 Mars' radii).

Disk NOT gravitationally unstable (\rightarrow low dense and hot)

✓ Accretion disk surface density profile:

 $\sigma(r) = \sigma_0 r^q$

with **-5 < q < -0.5** (inspired from p.p disks, simulation of moon formation)

2. Weak tide regime (far from the planet): The Isolation Mass

 The mass of accreted bodies is limited by the amount of material in their feeding region (Hill Sphere).

→ Maximum growth mass = ISOLATION MASS « Mi » (Lissauer, 1987):

 If Deimos formed near its current distance as a « satellite embryo », then we can derive the surface density of the disk @ Deimos location needed to reach the isolation mass.

3. Weak tide regime : Comparison with Deimos' mass

- Deimos' mass is compatible with the expected accretion disk's surface density at Deimos orbit for a disk's mass of ~ 10¹⁸ kg (Craddock, 2011).
- Deimos may be a satellite embryo too.

However, the disk is required to extend beyond the synchronous orbit.

3. Weak tide regime : Comparison with Phobos' mass

Isolation mass can reach Phobos' mass

 \rightarrow A Phobos' mass embryo can also be formed in the same disk as for Deimos.

- This embryo is formed closer to Mars (< 4 Mars' radii). Thus, expected to rapidly fall back to Mars due to tidal decay of its orbit.</p>
- It requires that a Phobos' mass embryo be formed closer to synchronous orbit.

SUMMARY

- Phobos/Deimos formation in an accretion disk seems possible.
- In a strong tide regime:

Consistent with shape/density of the moons Inconsistent with a 4 Gy old Martian satellite system with Deimos' location (> Synchronous orbit)

In a weak tide regime:

Consistent with Deimos' mass and location. *Problems raised:*

Phobos' mass body at its current location? It may require specific properties of the disk (spreading farther from the planet , low density, ...)

Further investigations

Numerical simulations of accretion in a disk extending primarily below the synchronous orbit.

BACKUP SLIDES

4. Low-tide regime (far from the planet): Number of moons formed

- ✓ After the formation of embryos
- Embryos tend to appear on orbits separated by 5-10 x the Hill Sphere radius
- A population of ~ 50-100 embryos may appear between ~Mars' Roche limit and Deimos' orbit
- Most of them may fall onto the planet (orbital tidal decay)
 → Consistent with Craddock (2011)

Thommes & Duncan 2007

✓ <u>Questions:</u>

Is Phobos the last representent of the falling population? Is Deimos the single representent of the population > Rsyncronous ?

3. Weak tide regime : Number of satellite embryos vs distance to Mars

- The number of satellite embryo expected at distances close to the synchronous limit (between 5.5 and 6 Mars' radii) is around 7 !
- As the mass of these embryos is close to Deimos' mass, and as Deimos' mass is
 7 times Phobos' mass, then :
 - \rightarrow Can Phobos be formed by accretion of embryos near the synchronous limit?

3. Weak tide regime : Number of satellite embryos vs Mars' elongated craters

- The number of satellite embryo is ranging from 50 to 110 depending on the disk' surface density profile (q value).
- This number is just lower than the estimated elongated craters (102 to 174), which could have been fiormed from decaying moonlets.

Acknowledgements

This work was financially supported by the Belgian PRODEX program managed by the European Space Agency in collaboration with the Belgian Federal Science Policy Office.

