Magnetospheric Ion Implantation in the Icy Moons of Giant Planets

Giovanni Strazzulla INAF – Osservatorio Astrofisico di Catania NWO visitor (May-July 2012)

gianni@oact.inaf.it; http://web.ct.astro.it/weblab/

CoI at CIMAP-GANIL, Caen, (France) : P.Boduch, J.J. Ding, T. Langlinay, X.Y. Lv, H. Rothard

The experimental work in Catania has been performed by the LASP Team and coworkers (G.A. Baratta, R. Brunetto, D. Fulvio, M. Garozzo, O. Gomis, S. Ioppolo, Z. Kanuchova, G. Leto, P. Modica, L. Moroz, M.E. Palumbo, F. Spinella, G. Strazzulla, et al.). Experimental study of the effects induced by fast ions on solids of astrophysical interest have been performed in several laboratories in the world

In "situ" PROCESSING

Solid Materials in Space

WHAT:

SILICATES CARBONS olivines PAHs piroxenes graphite Amorphous carbons $ICES
H_2O
CO_2
CO
NH_3
CH_4
OCS$

Interstellar medium (ISM) Circumstellar regions Interplanetary medium Planets and satellites Minor objects (asteroids, comets, TNOs)

The Jovian magnetosphere

Jupiter's moons are dipped into the magnetosphere and their surfaces are continuously bombarded by energetic ions (mainly H⁺, Sⁿ⁺ and Oⁿ⁺) accelerated by Jupiter's magnetic field:

Mean Energy Flux (keV cm⁻² s⁻¹)

Ιο	1 x 10 ⁹
Europa	6 x 10 ¹⁰
Ganymede	5 x 10 ⁹
Callisto	2 x 10 ⁸

Cooper et al., 2001, Icarus 149, 133

Copyright © 2005 Pearson Prentice Hall, Inc.

\checkmark Effects \rightarrow Sputtering

 H_2O ice

Fig. 3. The difference in the sputtering yield at 120 K and at <90 K: Y(120)-Y(0), versus Y(0). Data for 30 keV H, He, O and Ar ions: this work; 30 keV Kr [21]. Electron data from [45]. MeV data from [8]. The line is a linear fit, Y(120 K) = 0.85Y(0).

Measurements of sputtering yield allow e.g.:

-To calculate the lifetimes for the destruction of icy grains (e.g. Baragiola RSLTS 362, Issue 1814, 29, 2004)

-To predict the column density of O_2 in the atmosphere of Europa (e.g. Johnson et al., GeoResLett 25, 3257, 1998)

And (hopefully) will allow:

-To explain the presence of ionised and neutral species in the environments of the Jovian Moons (JUICE!!)

\checkmark Effects \rightarrow Structure of the ice

Galileo NIMS :

primary H_2O absorption at ~1.0, ~1.25, ~1.5, ~2.0 and ~3.0 µm are .

The 1.65- μ m crystalline water ice feature is apparent on all three satellites, but is faint in the Europa dark terrain spectra, which also exhibit strongly asymmetric absorption feature shapes at 1.5 and 2.0 μ m representative of bound water such as hydrated salts and sulfuric acid hydrate.

\checkmark Effects \rightarrow Chemical

Hydrogen peroxide in the Solar System Previous Work

H₂O₂ production as a function of temperature

Ion	Range (A)
H^{+}	7800
C^+	1800
\mathbf{N}^+	1500
O^+	1350
Ar ⁺	700

IonpenetrationdepthThe ion energy is30 keV

 H_2O_2 production is greater or, at most, equal at 77 K than at 16 K:

- Radical mobility
- Diffusion velocity
- Incoming H and O may form H₂O₂ molecules

O. Gomis, M. A. Satorre, G. Strazzulla, G. Leto

Hydrogen peroxide formation by ion implantation in water ice and its relevance to the Galilean satellites. *PlSpSci* 52, 371 (2004)

G. Strazzulla, G. Leto, O. Gomis, M. A. Satorre Implantation of carbon and nitrogen ions in water ice. *Icarus* 164, 163 (2003)

O. Gomis, G. Leto, G. Strazzulla

Hydrogen peroxide production by ion irradiation of thin water ice films. A & A 420, 405 (2004)

- Ion irradiation is the primary candidate to explain the presence of H_2O_2 on the Galilean moons

- On Europa, H₂O₂ could be concentrated in patches

- The results support the possibility of a radiation-driven ecosystem on Europa

\checkmark Effects \rightarrow Ion Implantation

Two kinds of experiments

ION (E in keV)	TARGET T= 16-150 K	MAJOR PRODUCED SPECIES (In bold those containing the projectile)	REFERENCES
H (1.5, 30- 100)	CO ₂	CO, H ₂ CO ₃ , CO ₃ , O ₃ O-H in poly-water	Brucato, Palumbo, Strazzulla. Icarus 125, 135, 1997
	SO ₂	SO ₃ , polySO ₃ , O ₃ , elemental S	Garozzo, et al PlSpSci 56, 1300, 2008
C ⁿ⁺ (10, 30) n=1-3	H ₂ O	H ₂ O ₂ , CO₂	Strazzulla, et al. Icarus 164, 163, 2003 Lv et al 2012 (submitted)
N (15, 30)	H ₂ O	H ₂ O ₂	Strazzulla, et al. Icarus 164, 163, 2003
	$H_2O + CH_4$	C_2H_6 , CO, CO ₂ , OCN⁻ , HCN	Strazzulla, PlSpSci 47, 1371, 1999
O (30)	CH ₄	C_2H_6, C_2H_4	Palumbo AdvSpRes 20, 1637, 1997
	$N_2 + CH_4$	C_2H_6, C_2H_4, HCN	Ottaviano, Palumbo, Strazzulla, Conf Proc. SIF 68, 149, 2000
S ⁿ⁺ (35-200) n= 1-11	H ₂ O	H_2O_2 H_2SO_4 dissolved in H_2O Strazzulla et al. Icarus, 192, 623, Ding et al. in preparation	

Europa

Ganymede

Callisto

Near IR observations made by the NASA Galileo spacecraft showed that:

On Io SO_2 ice is dominant

- On Europa, Callisto and Ganymede H,O ice is dominant
- On Europa significant quantities of magnesium and sodium sulfate and carbonate hydrates
- Other absorption features and their prime candidates are:
- 3.4 µm $(\sim 2940 \text{ cm}^{-1})$ C-H
- 3.5 " $(\sim 2857 \text{ cm}^{-1})$ H_2O_2
- 3.88 "
- **4.05** " (~ 2470 cm^{-1})
- 4.25 "
- 4.57
- $(\sim 2350 \text{ cm}^{-1})$
- $(\sim 2580 \text{ cm}^{-1})$ S-H, H₂CO₃ SO_2
 - CO_2
- $(\sim 2190 \text{ cm}^{-1})$ CN 66

A still open question is to understand if those species are native from the satellites or are synthesized by exogenic processes such as ion implantation.

Dalton et al PSS 2012, in press

Dalton et al PSS 2012, in press

Sulfuric acid (H_2SO_4) Hydrate Hexahydrite: $MgSO_4 \cdot 6(H_2O)$ Epsomite: $MgSO_4 \cdot 7(H_2O)$

Dalton et al PSS 2012, in press

Available online at www.sciencedirect.com

ICARUS

www.elsevier.com/locate/icaru

Icarus 192 (2007) 623-628

Hydrate sulfuric acid after sulfur implantation in water ice

G. Strazzulla^{a,*}, G.A. Baratta^a, G. Leto^a, O. Gomis^b

^a INAF – Osservatorio Astroficico, via S. Sofia 78, I-95123 Catania, Italy ^b Departamento de Física Aplicada, Escuela Politecnica Superior Alcoy, Universidad Politecnica de Valencia, Spain Received 23 November 2006; revised 14 May 2007 Available online 8 September 2007

We demonstrate that S-implantation efficiently forms hydrated sulfuric acid whose observed abundance is explained as caused by an exogenic

process.

EPSC Abstracts Vol. 7 EPSC2012-25 2012 European Planetary Science Congress 2012 © Author(s) 2012

Implantation of Sⁿ⁺ ions on the Galilean moons

J.J. Ding (1), P. Boduch (1), A. Domaracka (1), T. Langlinay (1), X.Y. Lv (1), M.E. Palumbo (2), H. Rothard (1) and **G. Strazzulla** (2)

(1) Centre de Recherche sur les Ions, les Matériaux et la Photonique, CIMAP – CIRIL – GANIL Caen France; (2) INAF - Osservatorio Astrofísico di Catania, Catania, Italy, (gianni@oact.inaf.it / Fax: +39 095330592).

Ding et al. 2012 In preparation

Lv et al. 2012 submitted

M.E. Palumbo (3), S. Pilling (4), H. Rothard (1) and G. Strazzulla (3)

Experiments are conducted at the GANIL Laboratories (Caen, France) Available ION Beams: Multi Charged; E from a few keV to hundreds MeV

Lv et al. 2012 submitted

Application to icy satellites

- Although a relevant quantity of CO_2 can be formed, this is not the dominant formation mechanism provided that the fluxes of C ions are correct. (In particular we would expect more CO_2 at the polar region of Ganymede than at the equator but observations indicate this is not the case)

- Sulfur implantation is the primary mechanism to explain the presence of hydrated sulfuric acid

Satellite	S-ions	C-ions	Time (years) to	Time (years) to	Time (years) to
	$cm^{-2}s^{-1}$	cm ⁻² s ⁻¹	produce	produce	produce
		1 1 1	$3x10^{17}$ CO ₂	$2x10^{17}$ SO ₂	$3x10^{19}$ H ₂ SO ₄
1.	121-11	100	mol cm ⁻²	mol cm ⁻²	mol cm ⁻²
Europa global	0.2-1.4	0.4-2.8	0.8-5.7	$0.2 - 1.2 \times 10^4$	$1.0-7.3x10^4$
1921	<i>x</i> 10 ⁸	<i>x</i> 10 ⁷	<i>x</i> 10 ³		
Ganymede polar	$3.2x10^{6}$	$1.6x10^{6}$	$1.5x10^4$	$1.5x10^4$	$1.5x10^4$
Ganymede	$5.8x10^4$	$2.9x10^4$	$8.2x10^5$	$8.2x10^5$	$8.2x10^{5}$
equator	Stans-1				
Callisto global	$3.6x10^5$	$3.6x10^5$	6.6 <i>x</i> 10 ⁴	$6.6x10^4$	$6.6x10^4$

 $\checkmark Effects$ at the interface solid/ice \rightarrow mixing

Water ice on C or S-rich substrates

T=12-80 K

H₂O on amorphous carbon at 12 K

Mennella, Palumbo, Baratta 2004, ApJ 615, 1073

The carbon cycle: initiated by ion processing at the interface s between C-bearing solids and water ice!!

Time necessary to produce the amount of CO_2 molecules of the order of those detected on the surfaces of the Galilean satellites $(3 \times 10^{17} \text{ molecules cm}^{-2})$ for three different surface depths. The times have been obtained from Fig. 20.5 of Johnson et al. (2004) with the assumptions on the amount of available carbonaceous surface area done in the text.

Satellite	Time (years) to produce 3×10^{17}			
$\rm CO_2\ molecules cm^{-2}$				
Europa global	$5 imes 10^1$	$3 imes 10^2$	2×10^3	
Ganymede polar	$3 imes 10^2$	4×10^3	4×10^4	
Ganymede equator	2×10^4	2×10^5	5×10^6	
Callisto global	$6 imes 10^3$	$1 imes 10^5$	$2 imes 10^6$	
Surface depth (μm)	10	100	1000	

Gomis & Strazzulla, Icarus 177 (2005) 570-576

We need Juce!

What next?

Some of the (many) open questions:

-Where SO₂ comes from?

-What produces the UV dark material and its distribution on the surfaces?

-Optical constants of relevant materials

-Inter-relations between sulfur and carbon cycles