WE LOOK AFTER THE EARTH BEAT STE-QUEST WORKSHOP TAS Assessment Study Main Outcomes

TAS-F CANNES

THALES ALENIA SPACE OPEN

3230354-DOC-TAS-FR-002

TAS Assessment Study

Major effort in the study related to provide scientific instruments with:

- Quiet mechanical environment
 - Avoidance of any vibrational noise,

-2

- Drag removal (if any)
- Power generation avoiding Solar Array rotations
- Control strategy (AOCS actuation)
- Required attitude and thermal control (not discussed here)
 - Alignment of axis propagation of the atoms
 - Zarge power dissipations need
- Radiations levels limitations
- EMC compatibility levels
- Science Ground Station adequate visibility (on going)
- 🛰 Link stability

7/100

We present here a <u>summary of our End to End Performance Model</u>, with methods and results

ESTEC May 22/23, 2013

THALES ALENIA SPACE OPEN

2

DRAG FREE ANALYSIS RESULTS

- > Driving requirement:
 - non-gravitational acceleration within the instrument volume shall be less than 1e-6 m/s2
- Spacecraft properties
 - Drag coefficient Cd = 2.2 (worst case)
 - Mass m = 1200 kg (worst case dry mass)
- ➤ Orbit with perigee @700km
 - Mission requirement always satisfied with high margin
 - Maximum cross-section to fulfill it is 19 m2
- Orbit with perigee @600km
 - Mission requirement always satisfied with margin
 - Maximum cross-section to fulfill it is 6.5 m2 at perigee, when the attitude strategy opposes the minimum crosssection (current design cross section is 5.1 m2)
- >> Orbit with perigee @500km
 - Mission requirement violated around the perigee (see pictures on the right)
 - Maximum cross-section to fulfill it is 2 m2 at perigee, not reachable with any of the proposed spacecraft configurations
 - The violation occurs for 300s over a complete perigee pass duration of 2000s
- With actual orbit the science phase starts @650km and evolves up to 2250 km ca. No drag problems.

ESTEC May 22/23, 2013

Ce document ne peut être reproduit, modifié, adapté, publié, traduit d'une quelconque façon en tout ou partie, ni divulgué à un tiers sans l'accord préalable et écrit de Thales Alenia Space - © 2012, Thales Alenia Space

Radiation analysis: models

- Trapped particles
 - Electrons: AE-8, solar maximum
 - Protons: AP-8, solar minimum

Solar particles

- Average statistical models: ESP, 90%CL
- Solar flare model: CREME96 worst case
 - worst week, day and 5 mins
- → GCR: CREME96, solar minimum, H to H, H to Fe
- Dose calculation with solid sphere geometry
 - Nuclear processes included: Nuclear attenuation + local charged-secondary energy deposition
- Detailed sectoring analysis on going
- Local shielding is a possible countermeasure
- STE-QUEST could offer more than 3.5 mm of Al eq. to the equipments inside the payload module

 THALES ALENIA SPACE OPEN

 Ce document ne peut être reproduit, modifié, adapté, publié, traduit d'une quelconque façon en tout ou partie ni divulqué à un tiers sans l'accord oréalable et écrit de Thales Alenia Space - © 2012. Thales Alenia Space

Magnetic Cleanliness Issues

DC magnetic budget has been estimated:

- Based on Monte Carlo Algorithm analysis
- ➤ With a predefined likelihood of the 99.9%
- At three reference points:
 - ATOM Physics Package
 - AT_CLK TUBE Laser source
 - AT_CLK Pharao assy
- Based on the analytical results, DC magnetic requirements seem not critical for the identified option (levels < 1 μT for all the potential victims, w.r.t. 0.1 mT requirement).
- The analyses will be maintained updated and refined accordingly to the project maturity

ESTEC May 22/23, 2013

THALES ALENIA SPACE OPEN

Major mission requirements leading Service Module design

Mission constraints

- The launch with Soyuz into HEO, drifting orbit
- The instruments accommodation requirements
- 7 The mechanical environment
- The concurrent operation of instruments & links
- Autonomy, reliability, safety (Space Debris mitigation)
- Programmatic issues (launch in 2022)
- Main SVM challenges
 - Power generation
 - Large power consumption associated with drifting orbit
 - AOCS actuation & Mechanical design
 - S/C requires both agility and low vibration environment.
 - Modularity is required to achieve launch date instruments to CoG distance to be limited to decrease lever arm

THALES ALENIA SPACE OPEN

Ce document ne peut être reproduit, modifié, adapté, publié, traduit d'une quelconque façon en tout ou partie, ni divulgué à un tiers sans l'accord préalable et écrit de Thales Alenia Space - © 2012, Thales Alenia Space

Power generation problematic SA trade off

ni divulgué à un tiers sans l'accord préalable et écrit de Thales Alenia Space - © 2012. Thales Alenia Space

Attitude control actuation Reaction wheels compliance

🛰 Analysis principle

- Transfert function assumes dampers (f=5Hz / Q_f = 3 / T_{HF} =0.02), rigid S/C box and SA flexible modes
- Reaction wheels disturbances are model
 - with static & dynamic unbalances from supplier
 - harmonic data extrapolated from another device.
- Frequency analysis is performed for perigee pass actuatio profile, assuming several initial momentum loads.

Results:

- Requirement saturations are presented in the table below. Compliance is achieved
- Note that N[∞] compliance with ASD requirement is met only for initial momentum loads < 7 Nms, but that spikes are tolerated provided RMS req. are met

	Number	location	time	Ball bearing RCW
Model				HR0610 12Nms
APE	R-SPI-20	AI	Perigee & apogee	0.3%
RPE	R-SPI-30	AI	Perigee	30.1%
ASD	R-SPI-50	AI	Perigee	Ok below 7nms
Acc RMS PL	R-SPI-51	MOLO	Perigee & apogee	23.3%
Acc RMS AI	R-SPI-51	AI	Perigee	0.06%
ACC PL	R-SPI-60	PL	Perigee & apogee	73.0%
ACC AI	R-SPI-61	AI	Perigee	52.6%

ESTEC May 22/23, 2013

A Theire / Forneccenice Co

Ce document ne peut être reproduit, modifié, adapté, publié, traduit d'une quelconque façon en tout ou partie, ni divulgué à un tiers sans l'accord préalable et écrit de Thales Alenia Space - © 2012, Thales Alenia Space

Scientific Links - E2E performance model

- STE-QUEST mission will include sufficiently stable optical and microwave time and frequency 9 transfer (TF&T) systems allowing comparison of atomic clocks on ground and on-board AC with negligible noise contribution from the transfer system itself.
- The required accuracy calls for two-way systems in order to eliminate or almost reduce unwanted effects such as Shapiro and tropospheric delay, 1st order Doppler, common mode effects ecc.
 - Two bi-directional MW PN-coded links operate in Ka-band: the high carrier frequency of the up-and downlink permits a noticeable reduction of the ionospheric delay.
 - A third PN-coded MW channel (downlink) in S-band (2.2 GHz) is added and used to determine the ionosphere total electron content allowing the cancellation of the residual ionospheric effect.
 - A bidirectional optical link (more sensitive but more affected by atmospheric turbulence) transmits and receives clock signals as well.
- The aim of the E2E performance model is to make assessments uncertainty and instability affecting all the parameters involved in T&F transfer performances and evaluate their impact, e.g.:
 - Application of atmosphere-describing models (ionosphere and troposphere) on T&FT at the used frequencies
 - Simulation of the thermal behaviour of the system hardware and of the consequent phase shift
 - Propagation of PoD performances on T&FT (from the desynchronization equation)
 THALES AL

ÉSTEC May 22/23, 2013

MWL - Description

- The system uses code measurements and absolute carrier phase measurements in up- and down links. This allows measuring both phase and group delays, after cross-correlation of the received signals with the on-board reference signal.
 - > DLLs at both terminals are able to extract phase measurements from the comparison of local and received sequences
- The design aims to achieve equal lengths in the up- and down-link paths; symmetry of the ground and space terminals is therefore important to improve cancellation and compensation of unwanted delays.

Block schemes of the S/C (here below) and GT terminals are symmetric at the maximum extent.

- The S/C LGAs are not used with current GTs configuration (Turin, Tokyo, Boulder), which does not allow perigee visibility. However, they are kept in the design in view of possible new GTs introduction.
- Optimized modulation scheme (PN) and rate (100MChip/s) to minimize multipath effects and improve synchronization

signal phase.

Phase

MWL Stability Assessment

- Simulation assumptions (valid for the OL also): system performances are evaluated using STK retrieved S/C and G/S position data. G/S position is supposed to be known with an uncertainty of 0.01 m.
- The following residual delays after control/compensation are simulated over one orbit:
 - Computed from local Turin measurements (credits: ISAC, INRIM)
 - Using mathematical models:
 NeQuick for the lonosphere Total Electron Content
 - model for the Troposphere-induced delays
 - Phase offset due to the Orbit dynamic-induced power signal variations (partially compensated with the VGA)
 - Thermal sensitivity to temperature variations within the S/C and EU thermal control performances
 - Hardware noise contribution
 - MWL Tracking Loop instability due to Doppler Effect (evaluated: negligible)
- Space-to-Ground link estimated stability:
 - Compliant to requirements.
 - Major contributor: ionospheric residual delay

```
ESTEC May 22/23, 2013
```


OL Beam Propagation Model

Free space propagation model

Free space propagation simplified model with coherent detection concept

12

- Noise contributions
 - Typical contributions:
 - 1. Signal shot noise (shot noise of signal current i.e. intrinsic random fluctuation of signal photocurrent due to its statistical nature).
 - 2. Background radiation shot noise.
 - 3. Detector dark current shot noise
 - 4. Pre-amplifier thermal noise (thermal noise generated by the current pre-amplifier load).
 - 5. Amplified source relativity intensity noise: intrinsic fluctuation of emitted laser power (only in presence of optical amplification at transmitter).
 - Further contributions:
 - 6. Shot noise term due to local oscillator wave power (for coherent detection only).
 - 7. Atmospheric contributions: atmospheric attenuation due to atmospheric scattering of beam, atmospheric ray path bending and propagation delay, atmospheric turbulence

ESTEC May 22/23, 2013

THALES ALENIA SPACE OPEN

- Simulation assumptions: For background radiation conservative evaluation, the S/C receiver is assumed to have¹³ Earth backscattered solar radiation in its field of view and the G/S receiver looks towards the Moon. Atmospheric propagation attenuation is evaluated by using ESA RMA. Air refractive index is derived from atmospheric parameters of RRA but with better uncertainties (P: 0.17 mbar, PH2O: 0.17 mbar, T: 0.14 K). Hardware temperature uncertainty: δT_{HW,S}: 1 °C; δ T_{HW,G}: 0.1 °C.
 - ➤ Total time delay uncertainty:

$$\delta\Delta T_{Diff,Tot} = \delta(T_{12} - T_{34})_{Det} + \delta(\Delta t_{12,Atm} - \Delta t_{34,Atm}) + \delta T_{23} + \delta T_{HW}$$

Delay retrieval 🖌

Atmospheric delay differential transmission time uncertainty

Optical and electronic hardware contribution

Total hardware differential contributions

Space-to-Ground link evaluated stability:

- Compliant to requirements.
- Simulations show the importance of knowledge of atmospheric parameters and of HW temperatures (to be known with good accuracy).
- Atmospheric turbulence phase noise contribution is negligible.

ESTEC May 22/23, 2013

Ce document ne peut être reproduit, modifié, a ni divulgué à un tiers sans l'accord préalable et écrit de Thales Alenia Space - © 2012, Thales Alenia Space

Allan deviation

Summary and conclusions from TAS-I side

- **TAS Assessment Study outcomes put in evidence that:**
 - >> the mission is challenging but feasible
 - mission objectives are achievable
- At spacecraft level, all the critical issues and those aspect considered more difficult have been analyzed and none of them appears to be an unachievable target, solutions are singled out
- Space segment realization is able to match the target of 2022 launch, providing the anticipation of some activities wrt the CDR.

ESTEC May 22/23, 2013

THALES ALENIA SPACE OPEN

ThalesAlenia

14

Ce document ne peut être reproduit, modifié, adapté, publié, traduit d'une quelconque façon en tout ou partie, ni divulgué à un tiers sans l'accord préalable et écrit de Thales Alenia Space - © 2012, Thales Alenia Space