Tests of Lorentz Symmetry with STE-QUEST

Jay D. Tasson

Carleton College

outline

- Lorentz invariance
 - meaning
 - violation
 - motivation for testing
 - test framework
- clock tests
 - theoretical analysis
 - STE-QUEST sensitivity
- WEP tests
 - theoretical analysis
 - STE-QUEST sensitivity
 -

Based on STE-QUEST analysis with Brett Altschul & Quentin Bailey

relativity

 physical results are independent of the velocity of the experiment and the *direction* it points

- juggling facing the other way still works
- rotation invariance results are independent of the direction the experiment points

relativity

 physical results are independent of the velocity of the experiment and the direction it points

- juggling on ship moving at constant velocity without rocking still works
- boost invariance results are independent of the constant velocity of the experiment

what does relativity violation look like?

• juggling while lying on your back is different

what does relativity violation look like?

- juggling while lying on your back is different
- apparent relativity violation
- resolution: Earth is part of experiment. It should be turned with the juggler.

fundamental relativity violation

• relativity

- relativity violation

(in general, there can be time components and higher rank tensors, but they're hard to draw)

general test framework Gravitational Standard-Model Extension (SME):

effective theory which contains

- General Relativity
- the Standard Model
- all Lorentz-violating terms
- broad search for LV

Lorentz-violating terms

- constructed from known physics (fields, particles, interactions)
- parameterized by coefficients
- sample

$$\vec{a} = \vec{g} + \vec{c} (\vec{c} \cdot \vec{g})$$

different for various particles

Colladay & Kostelecký PRD '97, '98 Kostelecký PRD '04

gravitational SME

- effective field theory
- expansion of Lagrangian about known physics

$$L_{\rm SME} = \underbrace{L_{\rm SM} + L_{\rm GR} + L_{\rm LV+L_{\rm LV} + \dots}}_{\text{known physics}} \text{Lorentz violating corrections}$$

$$L_{\rm LV} = L_{\rm fermion} + L_{\rm photon} + L_{\rm pure\,gravity} + \dots$$

nongravitational minimal QED limit

 $L_{\text{fermion}} = \frac{1}{2} i \overline{\psi} (\gamma^{\mu} - c^{\mu}{}_{\nu} \gamma^{\nu} - e^{\mu} \dots) \overleftrightarrow{D_{\mu}} \psi$ $- \overline{\psi} (m + a_{\mu} \gamma^{\mu} + b_{\mu} \gamma_{5} \gamma^{\mu} + \dots) \psi$

coefficients for Lorentz violation

- particle-species dependent
- to first approximation, constant in Sun-centered frame

PPN vs. SME

framework	PPN	SME
parameterizes deviations from:	General Relativity (including some Lorentz violation)	exact Lorentz invariance (including some corrections to GR)
expansion about:	GR metric	GR + standard model Lagrangian
GR corrections?	Yes	Yes, different ones!
matter sector /standard model corrections?	No	Yes

tests

- compare experiments pointing in different directions
- compare experiments traveling at different velocities
- SME
 - predictive
 - quantitative comparisons
- find
 - relativity violation
 - field of unknown origin eg. best existing bounds on spacetime torsion¹

1) Kostelecký, Russell, Tasson PRL '08

Earth rotation

- orientation & velocity of experiment constantly changes
- periodic at rotational (sidereal) period
- test relativity by comparing experimental results at an infinite number of orientations & velocities

Earth revolution

- velocity of experiment constantly changes
- annual periodicity
- test relativity by comparing experimental results at an infinite number of velocities

Turntable

- variation in direction about an axis different from Earth
- additional sensitivities
- systematics

Satellite

- rapidly sample large space of Lorentz frames, higher boost, chosen directions
- STE-QUEST variable orbit additional independent sensitivities
- additional advantages in the context of gravitational tests

clock comparisions $L_{\rm LV} = L_{\rm fermion} + L_{\rm photon} + L_{\rm pure gravity} + \dots$

tests:

- clock comparisons
- spin-polarized solids
- pulsar-timing observations
- particle traps
- neutrino oscillations
- muons

clock comparisio	
	Much experimental/observational work:
$L_{\rm LV} = L_{\rm fermion} + I$	LeoCube Collaboration P. Abbasi et al. Phys. Poy. D.82
⊥ <i>i</i> i i i i i i i i i i	112002 (2010) : MiniBooNE Collaboration T. Katari: MINOS
	Collaboration P Adamson et al Phys Poy Lott 105 151601
tests:	(2010): MINOS Collaboration P. Adamson et al. Phys. Rev.
	Lett 101 151601 (2008): LSND Collaboration L B Auerbach
 clock compansons 	et al Phys Rev D 72 076004 (2005) : BNI α -2 collaboration
 spin-polarized solide 	G W Bennett et al. Phys. Rev. Lett 100, 091602 (2008): V W
spin polarized solid	Hughes et al. Phys. Rev. Lett. 87, 111804 (2001); BNI a_{-2}
 pulsar-timing observ 	collaboration M Deile et al · H Dehmelt et al Phys Rev
	<i>l ett.</i> 83, 4694 (1999) [•] R. Mittleman et al., <i>Phys. Rev. Lett.</i> 83,
 particle traps 	2166 (1999): G. Gabrielse et al., <i>Phys. Rev. Lett.</i> 82, 3198
noutring accillations	(1999). ; B. Heckel et al., <i>Phys. Rev. D</i> 78, 092006 (2008) ; B.
	Heckel et al., Phys. Rev. Lett. 97, 021603 (2006) ; LS. Hou et
• muons	al., Phys. Rev. Lett. 90, 201101 (2003) PRL server; B. Heckel
maono	et al., web manuscript. C. Gemmel et al., Phys. Rev. D 82,
	111901 (R) (2010) ; K. Tullney et al., ; J.M. Brown et al., Phys.
	Rev. Lett. 105, 151604 (2010) ; I. Altarev et al., Phys. Rev.
	Lett. 103, 081602 (2009); T.W. Kornack, G. Vasilakis, and M.
	Romalis, in CPT and Lorentz Symmetry IV, op. cit., p.206; P.
	Wolf et al., Phys. Rev. Lett. 96, 060801 (2006); P. Wolf et al., ;
	P. Wolf et al., ; F. Cane et al., Phys. Rev. Lett. 93, 230801
	(2004); D.F. Phillips et al., Phys. Rev. D 63, 111101 (2001);
	M.A. Humphrey et al., <i>Phys. Rev. A 68, 063807 (2003)</i> ; D.
	Bear et al., Phys. Rev. Lett. 85, 5038 (2000); R. Walsworth et
	al., AIP Conf. Proc. 539, 119 (2000); L.R. Hunter et al., in CPT

sensitivities with ordinary matter

Coefficient	Electron	Proton	Neutron	\tilde{d}_Z	$10^{-19}~{\rm GeV}$	_	_
$egin{array}{c} & & & & & & & & & & & & & & & & & & &$	10^{-31} GeV 10^{-31} GeV 10^{-29} GeV 10^{-26} GeV	10^{-31} GeV 10^{-31} GeV	10^{-32} GeV 10^{-32} GeV -	$ \begin{array}{c} \tilde{H}_{XT} \\ \tilde{H}_{YT} \\ \tilde{H}_{ZT} \end{array} $	10^{-26} GeV 10^{-26} GeV 10^{-26} GeV		10^{-26} GeV 10^{-26} GeV 10^{-27} GeV
$\tilde{b}_J^*, \ (J = X, Y, Z)$	10^{-22} GeV 10^{-18} GeV	 10 ⁻²⁴ GeV	10^{-28} GeV	${ ilde g_T \ ilde g_c}$	10^{-27} GeV 10^{-26} GeV	_	10^{-27} GeV 10^{-27} GeV
\tilde{c}_Q \tilde{c}_X \tilde{c}_Y \tilde{c}_Z $\tilde{c}_T X$	10^{-17} GeV 10^{-19} GeV 10^{-19} GeV 10^{-19} GeV 10^{-18} GeV	10^{-21} GeV 10^{-25} GeV 10^{-25} GeV 10^{-24} GeV 10^{-20} GeV	10^{-10} GeV 10^{-28} GeV 10^{-28} GeV 10^{-29} GeV		10^{-17} GeV 10^{-17} GeV 10^{-18} GeV	-	
\tilde{c}_{TY} \tilde{c}_{TZ} \tilde{c}_{TT}	10^{-18} GeV 10^{-20} GeV 10^{-18} GeV	10^{-20} GeV 10^{-20} GeV 10^{-11} GeV	$^{-}_{-}$ 10 ⁻¹¹ GeV	g_{ZX} \tilde{g}_{XZ} \tilde{g}_{YZ} \tilde{g}_{ZY} \tilde{g}_{DX}	10^{-18} GeV 10^{-17} GeV 10^{-17} GeV 10^{-18} GeV 10^{-22} GeV	$^{-}$	$^{-}$
$egin{array}{c} d_+ \ ilde d \ ilde d_Q \ ilde d_{XY} \end{array}$	10^{-27} GeV 10^{-26} GeV 10^{-26} GeV 10^{-26} GeV		10^{-27} GeV 10^{-26} GeV 10^{-26} GeV 10^{-27} GeV	\tilde{g}_{DY} \tilde{g}_{DZ}	10^{-22} GeV 10^{-22} GeV	10^{-25} GeV	10^{-28} GeV
$ \begin{array}{c} \tilde{d}_{YZ} \\ \tilde{d}_{ZX} \\ \tilde{d}_{X} \\ \tilde{d}_{Y} \end{array} $	10^{-26} GeV 10^{-26} GeV 10^{-22} GeV 10^{-22} GeV	$^{-}_{-}$ 10^{-25} GeV 10^{-25} GeV	10^{-26} GeV 10^{-28} GeV 10^{-28} GeV	Data Tables fo Kostelecký, R 2013 edition a	or Lorentz ussell Re rXiv:0801	and CPT v. Mod. Pł .0287v6	violation vys '11

sensitivities with ordinary matter

path to atomic experiment analysis

expand to desired order in LV L_{fermion} field redefinition fermion Euler-Lagrange eq. H_{Relativistic} relativistic quantum experiments Foldy-Wouthuysen expansion $H_{\text{nonrel}} = \dots + b_j \sigma^j + m(-c_{jk} - \frac{1}{2}c_{00}\delta_{jk})\frac{p_j p_k}{m^2} + \dots$ spin

periodic energy level perturbations!

sensitivities with ordinary matter

d_Z	10^{-19} GeV		_
\tilde{H}_{XT}	$10^{-26}~{ m GeV}$		10^{-26} GeV
\tilde{H}_{YT}	10^{-26} GeV		$10^{-26} { m GeV}$
\tilde{H}_{ZT}	10^{-26} GeV		10^{-27} GeV
\tilde{g}_T	$10^{-27}~{ m GeV}$	_	10^{-27} GeV
$ ilde{g}_c$	$10^{-26}~{ m GeV}$		10^{-27} GeV
\tilde{g}_Q	_	_	_
\tilde{g}_{-}	_	_	_
82			
(J = X, Y, Z)	_	_	_
(J = X, Y, Z) \tilde{g}_{XY}	$10^{-17}~{\rm GeV}$		_
$(J = X, Y, Z)$ \tilde{g}_{XY} \tilde{g}_{YX}	10^{-17} GeV 10^{-17} GeV		
$(J = X, Y, Z)$ \tilde{g}_{XY} \tilde{g}_{YX} \tilde{g}_{ZX}	10^{-17} GeV 10^{-17} GeV 10^{-18} GeV		
$(J = X, Y, Z)$ \tilde{g}_{XY} \tilde{g}_{YX} \tilde{g}_{ZX} \tilde{g}_{XZ}	10^{-17} GeV 10^{-17} GeV 10^{-18} GeV 10^{-17} GeV		
$(J = X, Y, Z)$ \tilde{g}_{XY} \tilde{g}_{YX} \tilde{g}_{ZX} \tilde{g}_{XZ} \tilde{g}_{YZ}	10^{-17} GeV 10^{-17} GeV 10^{-18} GeV 10^{-17} GeV 10^{-17} GeV		
$(J = X, Y, Z)$ \tilde{g}_{XY} \tilde{g}_{YX} \tilde{g}_{ZX} \tilde{g}_{XZ} \tilde{g}_{YZ} \tilde{g}_{ZY}	10^{-17} GeV 10^{-17} GeV 10^{-18} GeV 10^{-17} GeV 10^{-17} GeV 10^{-18} GeV		
$(J = X, Y, Z)$ \tilde{g}_{XY} \tilde{g}_{YX} \tilde{g}_{ZX} \tilde{g}_{XZ} \tilde{g}_{YZ} \tilde{g}_{ZY} \tilde{g}_{DX}	10^{-17} GeV 10^{-17} GeV 10^{-18} GeV 10^{-17} GeV 10^{-17} GeV 10^{-18} GeV 10^{-22} GeV	- 10 ⁻²⁵ GeV	$^{-}$ - - - 10 ⁻²⁸ GeV
$(J = X, Y, Z)$ \tilde{g}_{XY} \tilde{g}_{YX} \tilde{g}_{ZX} \tilde{g}_{XZ} \tilde{g}_{YZ} \tilde{g}_{ZY} \tilde{g}_{DX} \tilde{g}_{DY}	10^{-17} GeV 10^{-17} GeV 10^{-18} GeV 10^{-17} GeV 10^{-17} GeV 10^{-18} GeV 10^{-22} GeV 10^{-22} GeV	- 10^{-25} GeV 10^{-25} GeV	$^{-}$ - - 10 ⁻²⁸ GeV 10 ⁻²⁸ GeV

 10^{-26} GeV Data Tables for Lorentz and CPT violation 10^{-22} GeV 10^{-25} GeV 10^{-28} GeV Kostelecký, Russell Rev. Mod. Phys '11 10^{-22} GeV 10^{-25} GeV 10^{-28} GeV 2013 edition arXiv:0801.0287v6

WEP tests $L_{LV} = L_{fermion} + L_{photon} + L_{pure gravity} + \dots$ tests:

- lab tests
 - gravimeter
 - Weak Equivalence P. (WEP)
- space-based WEP
- exotic tests
 - charged matter
 - antimatter
 - higher-generation matter

- solar-system tests
 - laser ranging
 - perihelion precession
- light-travel/clock tests
 - time delay
 - Doppler shift
 - red shift

Kostelecky Tasson PRL '09; PRD '11

WEP tests

place constraints on coefficients unobservable in flat spacetime

Coefficient	Electron	Proton	Neutron
$\alpha \overline{a}_T$	$10^{-11}~{\rm GeV}$	$10^{-11}~{ m GeV}$	$10^{-11} { m GeV}$
$\alpha \overline{a}_X$	$10^{-6}~{\rm GeV}$	$10^{-6}~{\rm GeV}$	$10^{-5} { m GeV}$
$\alpha \overline{a}_Y$	$10^{-5}~{ m GeV}$	$10^{-5}~{\rm GeV}$	$10^{-4}~{ m GeV}$
$\alpha \overline{a}_Z$	$10^{-5}~{\rm GeV}$	$10^{-5}~{\rm GeV}$	$10^{-4} { m GeV}$
$\alpha \overline{e}_T$	10^{-8}	10^{-11}	10^{-11}
$\alpha \overline{e}_X$	10^{-3}	10^{-6}	10^{-5}
$\alpha \overline{e}_Y$	10^{-2}	10^{-5}	10^{-4}
$\alpha \overline{e}_Z$	10^{-2}	10^{-5}	10^{-4}

* few independent constraints

Data Tables for Lorentz and CPT violation Kostelecký, Russell Rev. Mod. Phys '11 2013 edition arXiv:0801.0287v6

WEP tests

place constraints on coefficients unobservable in flat spacetime

Coefficient	t Electron	Proton	Neutron
$\alpha \overline{a}_T$	$10^{-11}~{ m GeV}$	$10^{-11}~{ m GeV}$	$10^{-11} { m GeV}$
$\alpha \overline{a}_X$	$10^{-6} { m GeV}$	$10^{-6}~{\rm GeV}$	$10^{-5} { m GeV}$
$\alpha \overline{a}_Y$	$10^{-5}~{\rm GeV}$	$10^{-5}~{ m GeV}$	$10^{-4}~{ m GeV}$
$\alpha \overline{a}_Z$	$10^{-5}~{\rm GeV}$	$10^{-5}~{\rm GeV}$	$10^{-4}~{ m GeV}$
$\alpha \overline{e}_T$	10^{-8}	10^{-11}	10^{-11}
$\alpha \overline{e}_X$	10^{-3}	10^{-6}	10^{-5}
$\alpha \overline{e}_Y$	10^{-2}	10^{-5}	10^{-4}
$\alpha \overline{e}_Z$	10^{-2}	10^{-5}	10^{-4}

- extend range to 10⁻¹⁰ to 10⁻¹⁴
- 3 5 order of magnitude improvement
- many more independent sensitivities

Data Tables for Lorentz and CPT violation Kostelecký, Russell Rev. Mod. Phys '11 2013 edition arXiv:0801.0287v6

path to experimental analysis

expand to desired order in LV and gravity -fermion field redefinition fermion Euler-Lagrange eq. relativistic quantum experiments Relativistic Foldy-Wouthuysen expansion non-relativistic quantum experiments NonRel inspection Classical variation non-relativistic quantum experiments classical experiments

classical results

$$U = \frac{2Gm}{r} \left(1 + \overline{c}_{00}^{\mathbf{S}} + \frac{2}{m} (\overline{a}_{\text{eff}}^{\mathbf{S}})_{0} \right) + \dots$$

$$\ddot{x}^{j} = -\frac{1}{2}\partial^{j}U + (\overline{c}^{\mathrm{T}})^{j}{}_{k}\partial^{k}U + \frac{1}{m^{\mathrm{T}}}\alpha(\overline{a}_{\mathrm{eff}}^{\mathrm{T}})_{0}\partial^{j}U + \dots$$

 $|(a_{\text{eff}})_{\mu} = a_{\mu} - m e_{\mu}|$

S and T denote composite coefficients for source and test respectively

modified metric & particle equation of motion

- experimental hooks
 - particle-species dependence
 - time dependence

$$\ddot{\vec{x}} \supset -2g \, \alpha \overline{a}_T \hat{z} - 2g V_{\oplus} \, \alpha \overline{a}_X \sin(\Omega T) \hat{z} \\ -\frac{2}{5}g V_L \, \alpha \overline{a}_X \sin(\omega T + \psi) \hat{y}$$

lab tests

acceleration of a test particle T

 $\ddot{\vec{x}} \supset -2\frac{1}{m}gV_{\oplus} \,\alpha(\overline{a}_{\text{eff}}^{\text{T}})_{X}\sin(\Omega T)\hat{z} + gV_{\oplus}(\overline{c}^{\text{T}})_{TX}\sin 2\chi\sin(\Omega T)\hat{x}$

boost variation frequency

monitor acceleration
 of one particle
 over time --> gravimeter

monitor relative
 behavior of particles
 WEP (Weak Equivalence
 Principle) test

 frequency and phase distinguish from other effects

STE-QUEST

- improved overall WEP sensitivity
- more independent measurements via sampling of many frames

WEP tests

place constraints on coefficients unobservable in flat spacetime

Coefficient	t Electron	Proton	Neutron
$\alpha \overline{a}_T$	$10^{-11}~{ m GeV}$	$10^{-11}~{ m GeV}$	$10^{-11} { m GeV}$
$\alpha \overline{a}_X$	$10^{-6} { m GeV}$	$10^{-6}~{\rm GeV}$	$10^{-5} { m GeV}$
$\alpha \overline{a}_Y$	$10^{-5}~{\rm GeV}$	$10^{-5}~{ m GeV}$	$10^{-4}~{ m GeV}$
$\alpha \overline{a}_Z$	$10^{-5}~{\rm GeV}$	$10^{-5}~{\rm GeV}$	$10^{-4}~{ m GeV}$
$\alpha \overline{e}_T$	10^{-8}	10^{-11}	10^{-11}
$\alpha \overline{e}_X$	10^{-3}	10^{-6}	10^{-5}
$\alpha \overline{e}_Y$	10^{-2}	10^{-5}	10^{-4}
$\alpha \overline{e}_Z$	10^{-2}	10^{-5}	10^{-4}

- extend range to 10⁻¹⁰ to 10⁻¹⁴
- 3 5 order of magnitude improvement
- many more independent sensitivities

Data Tables for Lorentz and CPT violation Kostelecký, Russell Rev. Mod. Phys '11 2013 edition arXiv:0801.0287v6

Gravitomagnetic effect on intrinsic spin $ec{b} \leftrightarrow rac{G}{r^3} ec{J}_\oplus$

 $L_{\rm LV} = L_{\rm minimal} + L_5 + L_6 + L_7 + \dots$ existing tests large space for new searches

Kostelecky Mewes PRD '12

Tasson PRD '12

Summary

- STE-QUEST can probe Planck-scale physics via Lorentz symmetry tests
- sensitivities to large classes of presently uninvestigated coefficients can be attained
- significant sensitivities can be achieved via both clockcomparison tests and WEP tests that have qualitatively unique signatures
- sampling many Lorentz frames is an advantage of STE-QUEST in obtaining a maximum number of independent sensitivities to Lorentz violation