Fundamental Physics Tests by Atom Interferometry

Mark Kasevich Stanford University kasevich@stanford.edu

Physical sensitivity limits (10 m apparatus)

Quantum limited accelerometer resolution: $\sim 7x10^{-20}$ g

Assumptions:

- 1) Wavepackets (Rb) separated by z = 10m, for T = 1 sec. For 1 g acceleration: $\Delta \phi \sim mgzT/\hbar \sim 1.3 \times 10^{11}$ rad
- 2) Signal-to-noise for read-out: SNR \sim 10⁵:1 per second.
- 3) Resolution to changes in g per shot: $\delta g \sim 1/(\Delta \phi SNR) \sim 7 \times 10^{-17} g$
- 4) 10⁶ seconds data collection

We will exploit this sensitivity for:

Gravity wave detection, tests of General Relativity, new atom charge neutrality tests, tests of QED (photon recoil measurements), searches for anomalous forces...

Equivalence Principle (Ground-based)

Co-falling ⁸⁵Rb and ⁸⁷Rb ensembles

Evaporatively cool to enforce tight control over kinematic degrees of freedom

Statistical sensitivity

 $\delta g \sim 10^{-15} \text{ g with 1 month data}$ collection (2 $\hbar \text{k}$ atom optics)

Systematic uncertainty

 $\delta g/g \sim 10^{-16}$ limited by magnetic field inhomogeneities and gravity anomalies.

Evaporatively cooled atom source

Error Model

Use standard methods to analyze spurious phase shifts from uncontrolled:

- Rotations
- Gravity anomalies/gradients
- Magnetic fields
- Proof-mass overlap
- Misalignments
- Finite pulse effects

Known systematic effects appear controllable at the $\delta g \sim 10^{-16} g$ level.

(Hogan, Johnson, Proc. Enrico Fermi, 2007)

-k _{eff} g T ²	-2.84724×10^{8}	1.
$k_{eff} R_E \Omega_y^2 T^2$	6.21045×10^{5}	2.18122×10^{-3}
$k_{eff} T_{ss} V_L T^3$	1.57836×10^{3}	5.54347×10^{-6}
$-\frac{7}{12}$ k _{eff} T _{ss} g T ⁴	-9.20709×10^{2}	3.23369×10-6
$2 \; k_{\tt eff} v_{\tt x0} \; \Omega_y T^2$	1.97884×10^{1}	6.95002×10^{-8}
-3 $k_{eff} V_L \Omega_y^2 T^3$	-5.16411	1.81373×10 ⁻⁸
$\frac{7}{4}$ k _{eff} Ω_y^2 g T ⁴	3.0124	1.05801×10^{-8}
$rac{7}{12}$ k _{eff} R _E T _{ss} Ω_y^2 T ⁴	2.00827	7.05338×10^{-9}
$\frac{{\tt k_{eff}}^2{\tt T_{zz}}\hbar{\tt T}^3}{2{\tt m}}$	7.05401×10^{-1}	2.47749×10^{-9}
$k_{eff} T_{ss} v_{s0} T^3$	7.05401×10^{-1}	2.47749×10^{-9}
k _{eff} T _{ss} T ² z ₀	8.92817×10^{-2}	3.13573×10^{-10}
$-\frac{7}{4}$ k _{eff} R _E Ω_y^4 T ⁴	-6.57069×10 ⁻³	2.30774×10^{-11}
$-\frac{7}{4} k_{eff} R_E \Omega_y^2 \Omega_s^2 T^4$	-3.84744×10^{-3}	1.35129×10^{-11}
$-\frac{3 \hbar_{eff}^2 \Omega_y^2 \hbar T^3}{2 m}$	-2.30795×10^{-3}	8.10592×10^{-12}
$-3 k_{eff} v_{s0} \Omega_y^2 T^3$	-2.30795×10-3	8.10592×10^{-12}
$rac{1}{4}$ k _{eff} T _{zz} ² V _L T ⁵	2.18739×10-3	7.68251×10^{-12}
$3~k_{\tt eff}~v_{y0}~\Omega_y~\Omega_z~T^3$	1.76607×10^{-3}	6.20273×10^{-12}
$-\frac{31}{360}$ k _{eff} T _{ss} ² g T ⁶	-7.53436×10 ⁻⁴	2.6462×10^{-12}
$4 B_0 V_L T^2 \alpha b_{z1}$	5.14655×10^{-4}	1.80756×10^{-12}
–4B₀gT ³ αb _{z1}	-5.14655×10^{-4}	1.80756×10^{-12}
$k_{eff} \Omega_y^2 T^2 z_0$	9.73714×10^{-5}	3.41985×10^{-13}
$-k_{\tt eff} \Omega_y \Omega_z T^2 y_0$	-7.45096×10 ⁻⁵	2.61691×10^{-13}
$rac{7}{6}$ k _{eff} T _{zz} v _{x0} Ω_y T ⁴	6.39894×10^{-5}	2.24742×10^{-13}
-7 V _L g T ⁴ α b ² _{E1}	$-4.7766 imes 10^{-5}$	1.67762×10^{-13}
$rac{7}{6}$ k _{eff} T _{xx} v _{x0} Ω_y T ⁴	-3.19947×10^{-5}	1.12371×10^{-13}
$4 V_L^2 T^3 \alpha b_{s1}^2$	2.72948×10^{-5}	9.58642×10^{-14}
$3 g^2 T^5 \alpha b_{z1}^2$	2.04711×10^{-5}	7.18982×10^{-14}

Apparatus

Ultracold atom source $>10^6$ atoms at 50 nK 3e5 at 3 nK **Optical Lattice Launch** 13.1 m/s with 2372 photon recoils to 9 m Atom Interferometry 2 cm 1/e² radial waist 500 mW total power Dynamic nrad control of laser angle with precision piezo-actuated stage Detection

Spatially-resolved fluorescence imaging Two CCD cameras on perpendicular lines of sight

Current demonstrated statistical resolution, ~5e-13 g in 1 hr (87Rb) STANFORD UNIVERSITY

Interference at long interrogation time (T=1.15 s)

Wavepacket separation at apex

2T = 2.3 sec Near full contrast 3 nK 6.7e-12 g/shot

Dickerson, et al., arXiv:1305.1700 (2013)

Phase shifts

Term	Phase Shift	Size (rad)	
1	$k_{ m eff}gT^2$	2.1×10^8	Gravity
2	$2 {f k}_{ ext{eff}} \cdot \left({f \Omega} imes {f v} ight) T^2$	5.1	Coriolis
3	$k_{\rm eff} v_z \delta T$	3.5	Timing asymmetry
4	$\frac{\hbar k_{eff}^2}{2m}T_{zz}T^3$	0.44	Curvature, quantum
5	$k_{\text{eff}}T_{zi}\left(x_{i}+v_{i}T\right)T^{2}$	0.18	Gravity gradient
6	$\frac{1}{2}k_{\mathrm{eff}}\alpha\left(v_x^2+v_y^2\right)T^2$	0.04	Wavefront

Characterize velocity dependent shifts with spatial imaging (useful when atoms expand from a point source)

2-axis rotation measurement

Interference patterns for rotating platform:

STANFORD UNIVERSITY

Dickerson, et al., arXiv:1305.1700 (2013)

Magnetic lens cooling

Use diabatic steps in strength of TOP trap to cool atoms:

Atom cloud imaged after 2.6 seconds free-fall

Simulation of microgravity cooling performance. ~1 pK temperatures achievable.

Tilt angle of final pulse to introduce a phase shear

Enables simultaneous read-out of contrast and phase

Sugarbaker, et al., arXiv:1305.3298 (2013).

Phase Shear Readout (PSR)

Single-shot interferometer phase measurement

g

1 cm

- \checkmark Satellite pointing jitter and residual rotation readout
- \checkmark Laser wavefront aberration in situ characterization

Phase Shear Readout (PSR)

Single-shot interferometer phase measurement

g

1 cm

- \checkmark Satellite pointing jitter and residual rotation readout
- \checkmark Laser wavefront aberration in situ characterization

Phase Shear Readout (PSR)

- \checkmark Satellite pointing jitter and residual rotation readout
- \checkmark Laser wavefront aberration in situ characterization

Phase Shear Readout (PSR)

- \checkmark Satellite pointing jitter and residual rotation readout
- \checkmark Laser wavefront aberration in situ characterization

Phase shear/timing asymmetry

Fringe shear vs. timing asymmetry

Gyrocompass demonstration using phase shear

Satellite GW Antenna

STANFORD UNIVERSITY

JMAPS bus/ESPA deployed

Potential Strain Sensitivity

J. Hogan, et al., GRG 43, 7 (2011).

Analysis details

Curved wavefronts: momentum recoil depends on position in beam.

Design pulse sequences to accommodate Coriolis deflections of wavepacket trajectories and laser wavefront curvature.

5-pulse football sequence

Error Model

Analysis to determine requirements on satellite jitter, laser pointing stability, atomic source stability, and orbit gravity gradients.

	Differential phase shift	Size (rad)	Constraint
1	$\frac{\frac{1485k_{\rm eff}^3\hbar^2}{4Lm^2}T^6T_{\rm xx}\Omega_{\rm or}\delta\Omega$	$(180 \text{ s})\delta\Omega$	$\delta \Omega < 0.57~\mu\mathrm{rad/s}$
2	$\frac{\frac{1485k_{\rm eff}^3\hbar^2}{2Lm^2}T^6\Omega_{\rm or}^3\varepsilon_{\rm ZZ}\delta\Omega$	$(350 \text{ s})\varepsilon_{zz}\delta\Omega$	$\varepsilon_{zz} < 0.50$
3 4	$\frac{\frac{15}{2}k_{\rm eff}T^4R\Omega_{\rm or}^2\left(15T\left(T_{\rm zz}+3\Omega_{\rm or}^2\right)+8\Phi\Omega_{\rm or}\right)\varepsilon_g\delta\Omega}{30k_{\rm eff}T^4\Omega_{\rm or}^4\varepsilon_{\rm xx}\left(\delta x_{\rm n}-\delta x_{\rm f}\right)}$	$\begin{array}{c} \left(3\times10^9 \text{ s}\right)\varepsilon_g\delta\Omega\\ (22 \text{ m}^{-1})\varepsilon_{xx}\left(\delta x_n-\delta x_f\right)\end{array}$	$\begin{array}{l} \varepsilon_g < 5.8 \times 10^{-8} \\ (\delta x_{\rm n} - \delta x_{\rm f}) \varepsilon_{\rm xx} < 4.5 \ \mu {\rm m} \end{array}$
5	$15k_{\rm eff}T^4T_{\rm xx}\Omega_{\rm or}\left(\frac{k_{\rm eff}\hbar}{Lm}+9T\Omega_{\rm or}^2\right)(\delta z_{\rm f}-\delta z_{\rm n})$	$(0.84\ m^{-1})(\delta z_f - \delta z_n)$	$(\delta z_f - \delta z_n) < 120 \mu\mathrm{m}$
6 7	$30k_{\rm eff}T^4\Omega_{\rm or}^3 \left(\frac{k_{\rm eff}\hbar}{Lm} + 9T\Omega_{\rm or}^2\right)\varepsilon_{zz}(\delta z_{\rm f} - \delta z_{\rm n})$ $\frac{45}{2}k_{\rm eff}T^5 \left(T_{\rm xx}^2 + 6T_{\rm xx}\Omega_{\rm or}^2 + 4T_{zz}\Omega_{\rm or}^2 + 5\Omega_{\rm or}^4\right)\Delta v_x$	$(1.7 \text{ m}^{-1})\varepsilon_{zz}(\delta z_f - \delta z_n)$ $(270 \text{ s/m})\Delta v_x$	$\varepsilon_{zz} < 0.49$ $\Delta v_x < 370 \text{ nm/s}$
8	$3k_{\rm eff}T^4\Omega_{\rm or}\left(\frac{9k_{\rm eff}^2\hbar^2}{L^2m^2}-5T_{\rm xx}\right)\Delta v_z$	$(9.6 \times 10^3 \text{ s/m}) \Delta v_z$	$\Delta v_z < 10 \text{ nm/s}$
9	$30k_{\rm eff}T^4\varepsilon_{\rm ZZ}\Omega_{\rm or}^3\Delta v_z$	$(1.9 \times 10^4 \text{ s/m}) \varepsilon_{zz} \Delta v_z$	$\varepsilon_{zz} < 0.52$
10	$60 \frac{\hbar k_{\text{eff}}^2}{L^2 m} T^4 T_{\text{yy}} \delta v_{\text{yn}} \delta y_{\text{n}}$	$(4.3 \times 10^{-2} \text{ s/m}^2) \delta v_{yn} \delta y_n$	$\delta v_{yn} \delta y_n < 23 \mathrm{cm}^2/\mathrm{s}$
11	$36k_{\text{eff}}^3 \frac{\hbar^2}{Lm^2} \Omega_{\text{or}} T^3 (7 + 8\cos(\omega T)) \sin^4(\frac{\omega T}{2}) \overline{\delta \theta}$	$(3.9 \times 10^5) \overline{\delta \theta}$	$\overline{\delta \theta} < 0.26$ nrad
12	$4k_{\text{eff}}\delta z_n(7+8\cos(\omega T))\sin^4(\frac{\omega T}{2})\overline{\delta\theta}$	$(1.3 \times 10^{10} \text{ m}^{-1}) \delta z_n \overline{\delta \theta}$	$\overline{\delta \theta} < 0.77$ nrad
13	$\frac{27\sqrt{2}}{4}k_{\text{eff}}x_n\frac{L}{R}\Omega_{\text{of}}^2T^2\chi(\omega T)\overline{\delta\theta}$	$(1.1 \times 10^4) x_n \overline{\delta \theta}$	$\overline{\delta \theta} < 0.91 \text{ nrad}$

STANFORD UNIVERSITY

J. Hogan et al., GRG **43**, 7 (2011).

Wavefront distortion: temporal variations

Time varying wavefront inhomogeneities will lead to noncommon phase shifts between distant clouds of atoms

- High spatial frequencies diffract out of the laser beam as the beam propagates between atom clouds
- Limit for temporal stability of wavefronts determined by stability of final telescope mirror

See also, P. Bender, PRD (2011) and Hogan, PRD (2011).

Atom cloud kinematic constraints

Shot-to-shot jitter in the position of the atom cloud with respect to the satellite/laser beams constrains static wavefront curvature

Two-photon vs. Single photon configurations

2-photon transitions

GW signal from relative positions of atom ensembles with respect to optical phase fronts. 1 photon transitions

GW signal from light propagation time between atom ensembles.

Dimopoulos, et al., PRD (2008)

Laser frequency noise insensitive detector

Clock transition in candidate atom ⁸⁷Sr

- Long-lived single photon transitions (e.g. clock transition in Sr, Ca, Yb, Hg, etc.).
- Atoms act as clocks, measuring the light travel time across the baseline.
- GWs modulate the laser ranging distance.

STANFORD UNIVERSITY

Graham, et al., arXiv:1206.0818, PRL (2013)

2 Satellite Sr Single Photon

- Single baseline (two satellites)
- Single photon atom optics (e.g., Sr) for laser and satellite acceleration noise immunity
- Atoms act as clocks, measuring the light travel time across the baseline

Requirements for $h = 1e-20/Hz^{1/2}$

Attribute	Req.
Sat. acceleration noise (longitudinal)	10 ⁻⁸ g/Hz ^{1/2}
Transverse position jitter	10 nm/Hz ^{1/2}
Spatial wavefront	λ/100
Atom cloud temperature	1 pK
Pointing stability	0.1 µrad
Magnetic fields	4 nT/Hz ^{1/2}
Laser phase noise	10 Hz linewidth; 100 kHz/Hz ^{1/2}
Atom optics	100 ħk
Formation flying	2 satellites
Atom source	10 ⁸ /s Sr

Risk

Noise source	Risk
Magnetic Fields	Low
AC Stark	Low
Laser intensity jitter	Low
Atom source velocity jitter	Mid
Laser pointing jitter	Mid
Solar radiation	Low
Blackbody	Low
Atom flux	Low
Laser wavefront noise	High?
Atom detection noise	High?
Gravity gradient	Mid

See analysis in Graham, *et al.*, arXiv:1206.0818, PRL (2013) (and references therein).

DARPA QuASAR SBOC-1/Optical clock

6 liter physics package.

Contains all lasers, Sr source, 2D MOT, Zeeman slower, spectrometer, pumps, and 3 W Sr oven; 4e10 cold a/sec.

As built view with front panel removed in order to view interior.

408-735-9500 AOSense.com Sunnyvale, CA

Collaborators

Stanford University

PI: Mark Kasevich EP: Susannah Dickerson Alex Sugarbaker LMT: Sheng-wey Chiow Tim Kovachy Theory: Peter Graham Savas Dimopoulos Surjeet Rajendran

Former members:

David Johnson (Draper) Jan Rudolf (Rasel Group)

Also

Philippe Bouyer (CNRS)

NASA Goddard Space Flight Center

Babak Saif Bernard D. Seery Lee Feinberg Ritva Keski-Kuha

