STE-QUEST Mission: Atom Interferometer Performance Assessment And Error Estimations

STE-QUEST Atom Interferometer

Christian Schubert for the STE-QUEST ATI consortium

Motivation

STE-QUEST SciRD:

• Weak Equivalence Principle Tests: Test the universality of the free propagation of matter waves to an uncertainty in the **Eötvös parameter better than 1.5·10**⁻¹⁵.

Eötvös ratio in space:

$$\eta(A,B) = \frac{|a_A - a_B|}{g} = \frac{\Delta a}{g}$$

acceleration alocal gravitational acceleration gdifferential acceleration Δa

STE-QUEST will use a dual ⁸⁷Rb/⁸⁵Rb atom interferometer to measure $\eta(A, B)$ to 1.5·10⁻¹⁵ over a mission duration of 5 years.

Scientific challenges

- Interferometry:
 - Choice of ⁸⁷Rb / ⁸⁵Rb high common mode rejection ratio
 - Differential single shot sensitivity of 3·10⁻¹² m/s² @ 20 s cycle time (shot noise limited)
 - Free evolution time 2T = 10 s
 - Bias terms < $4.5 \cdot 10^{-15}$ m/s²
- Source:
 - Simultaneous preparation of each 10^{6 87}Rb / ⁸⁵Rb atoms in 10 s
 - ⁸⁵Rb scattering length tuning via Feshbach resonance
 - Miscibility
 - Very low effective atomic temperatures ~ 70 pK

Leibniz Universität 102 Source sequence 100 Hannover Feshbach field ON 2000 ms 3000 ms 600 ms 3000 ms 200 ms 1000 ms <u>10 mş</u> Loading of **3D MOT** Pre-Evaporative Free Molasses Raman evaporation dipole trap cooling Expansion Loading cooling kick in chip trap + DKC chip trap loading science chip crossed optical dipole trap copper mount total duration < 10 s ~ 1 nK after release from ODT ~ 0.07 nK after DKC 10⁶ atoms of each isotope magnetic trap

base chip

QUANTUS II – ⁸⁷Rb BEC on an atom chip

Particle number in dependence of preparation time:

- Largest BEC: 5x10⁵ atoms in 3.5s
- Highest flux: 4x10⁵ atoms in 2s
- Fastest BEC: 4x10⁴ atoms in 1s

Delta-Kick Cooling principle (DKC)

- Left: expansion after a decompression of 402 ms
- Middle: expansion out of a steeper holding trap after a decompression of 152 ms
- **Right**: expansion out of the steeper holding trap with DKC after a <u>decompression of 152 ms</u>

[Müntinga et al., PRL 110, 093602 (2013); Dickerson et al., arXiv:1305.1700v1; Chu et al., Opt. Lett. 11, 73 (1986)]

Delta-Kick Cooling principle (DKC)

QUANTUS I – ⁸⁷Rb BEC, DKC & AI in μg

• 10⁴ atoms of ⁸⁷Rb

- DKC to ~ 1 nK
- asymmetric Mach-Zehnder interferometer

[Physik Journal 05/2013; Müntinga et al., PRL 110, 093602 (2013)]

Stability of ⁸⁵Rb

Stability of ⁸⁵Rb

Stability of ⁸⁵Rb

DKC – fine tuning

Simulated expansion rate match: 0.3 % @ 600 a₀ for ⁸⁵Rb

Mitigation techniques

Temperature ~ 70 pK

- Beam splitting efficiency ~ 100 %
- Contrast loss due to gravity gradients and spurious rotations prevented: C > 60 %
- Wave front bias terms proportional to atomic temperature: < 10⁻¹⁵ m/s²

⁸⁷Rb / ⁸⁵Rb matched effective wave vectors ~ 10⁻⁹, Rabi frequencies ~ 10⁻⁴, pulse timing

- High differential suppression ratio for vibrations / inertial bias terms: 2.5.10⁻⁹
- Terms dependent on initial overlap / differential velocity remain: ~ 1 nm / 0.3 nm/s

Alternation of interferometer input states for subsequent cycles + μ -metal shield

- Relaxes the bias phase shift due to magnetic field gradients
- Gradients still affect initial overlap / differential velocity: have to be $< 3 \cdot 10^{-6}$ G/m

Double diffraction (Mach-Zehnder) interferometer

- Beam splitter laser phase lock loop noise negligible
- Suppression of AC-Stark shift

Sensitivity to the Eötvös ratio

- Orbit duration: 16 h
- 5 years correspond to 2840 orbits
- ATI science operation at perigee, 100 cycles corresponds to 0.5 h per orbit

Dependencies on the position of the satellite:

- g and projection of g onto the sensitive axis
- Interferometer contrast gravity gradient causes dephasing
- Eötvös sensitivity per orbit: **5**•**10**⁻¹⁴ **5**.**2**•**10**⁻¹⁴

ightarrow 2500 orbits to reach 1.10⁻¹⁵, corresponding to 4.75 years

Preliminary budget: statistical errors

Noise source	Conditions	Corresponding limit in m/s ²	Comment
Shot noise	10 ⁶ atoms, C = 0.6	2.93·10 ⁻¹²	Contrast changes
Linear vibrations	k matched to 10 ⁻⁹ , Rabi frequency matched to 10 ⁻⁴	~ 10 ⁻¹²	
Magnetic field	B ₀ = 1 mG, <i>V</i> B = 83 μG/m	1.1·10 ⁻¹³	
Other inertial contributions	10 % fluctuation per cycle in spatial overlap / differential velocity	< 10 ⁻¹³	
Mean field	Delay 1 s after release, effective ODT frequency 1 Hz, beam splitting jitter 0.001 per cycle	~ 10 ⁻¹⁷	
Sum		3.1.10-12	

Preliminary budget: systematic errors

Error source	Conditions	Corresponding limit in m/s ²	Comment	
Gravity gradient	$\Delta z = 1.1 \cdot 10^{-9} \text{ m}$	2.5·10 ⁻¹⁵	Connected to magnetic field gradient and distance to center of mass	
	$\Delta v_z = 3.1 \cdot 10^{-10} \text{ m/s}$	3.5·10 ⁻¹⁵		
Coriolis acceleration	$\Delta v_x = 3.1 \cdot 10^{-10} \text{ m/s}$	6.2·10 ⁻¹⁶	Connected to magnetic field gradient and distance to center of mass	
	$\Delta v_{y} = 3.1 \cdot 10^{-10} \text{ m/s}$	6.2·10 ⁻¹⁶		
Other inertial terms depending on	Δx = 1.1·10 ⁻⁹ m,	5.5·10 ⁻¹⁷	Connected to magnetic field gradient and distance to center of mass	
differential	Δy = 1.1·10 ⁻⁹ m	1.6·10 ⁻¹⁸		
velocity	others	4.6·10 ⁻¹⁷		
Photon recoil	$T_{zzz} = 6GM_e/R^4$	3.9·10 ⁻¹⁷		
Static magnetic fields	∇B < 0.1 nT/m	10 ⁻¹⁵	Mitigation: alternate input states	
Raman lasers wave front	Retro reflection R = 250 km Collimation ~400 m,	6.3·10 ⁻¹⁶	Mitigation: expansion rate lock	
	I _{at} = 0.07 nK	2.8·10 ⁻¹⁶		
Mean field	Delay 1 s after release, effective ODT frequency 1 Hz	-1·10 ⁻¹⁷		
Spurious accelerations	Suppression ratio 2.5·10 ⁻⁹ , 4·10 ⁻⁷ m/s ²	10 ⁻¹⁵		
Detection efficiency	η - 1 < 0.003	< 10 ⁻¹⁵	Possibly calculated from Bayesian fit	
Sum		1.1·10 ⁻¹⁴		

<u>Outlook</u>

Source performance

- Anharmonicities of the trap
- Miscibility criterium
- Anisotropic trap
- Optimized evaporation
- Crossed dipole trap and vibrations

Consolidation of error budgets / calibration techniques

- e.g. Rabi frequency match to 10⁻⁴
- Experimental verification of the estimated error budget / basic assumptions
- Impact of self-gravity has yet to be determined

<u>Outlook</u>

Source performance

- Anharmonicities of the trap
- Miscibility criterium
- Anisotropic trap
- Optimized evaporation
- Crossed dipole trap and vibrations

Consolidation of error budgets / calibration techniques

- e.g. Rabi frequency match to 10⁻⁴
- Experimental verification of the estimated error budget / basic assumptions
- Impact of self-gravity has yet to be determined

