

CSEM centre suisse d'électronique et de microtechnique

MOLO: A Microwave-Optical Local Oscillator for STE-QUEST

Gefördert durch:

The ATC-MOLO consortium:

- P. Gill NPL, Teddington, UK
- S. Lecomte CSEM, Neuchâtel, Switzerland
- S. Schiller Heinrich-Heine-Universität, Düsseldorf, Germany
- U. Sterr PTB, Braunschweig, Germany

aufgrund eines Beschlusses des Deutschen Bundestages

STE-QUEST Workshop, ESTEC, May 23, 2013

Introduction

STE-QUEST Atomic Clock Instrument

- PHARAO tube based Cs clock
- Microwave synthesis with minor modifications
- Improved microwave source: MOLO

ACES approach:

- Stability from ultra-stable microwave oscillator from multiplied quartz
- On board accuracy evaluation through comparison with space hydrogen maser acting as flywheel

STE-QUEST approach:

- Improved stability through low noise microwave source
- Evaluation by comparison with the same stable microwave source
- Provide optical frequency referenced to Cs for optional optical link

Atomic clock interrogation

Conversion of LO phase noise to noise of atomic error signal limits clock instability (Dick effect)

LO Stability and Drift:

- $\sigma_y(\tau) < 3.5 \cdot 10^{-15}$ for $\tau = 1$ s to 100 s
- drift uncertainty < 2.10⁻¹⁶ /s over 1000 s

High stability over a few minutes for onboard evaluation of:

- collisions,
- velocity effects
- cavity phase shifts, ...

PHARO synthesis document, STE-QUST Science Requirement Doc.

10 GHz microwave oscillators

Phase noise performance

10 GHz microwave oscillators

Phase noise performance

Cryogenic sapphire: J. G. Hartnett, N. R. Nand, and C. Lu, Appl. Phys. Lett. **100**, 183501 (2012) Frequency divider: T. M. Fortier et al, Nature Photonics **5**, 425 (2011)

Optical Frequency Divider

Cavity Stability

PTB's shoebox sized 698 nm cavity setup from transportable Sr clock reaches specs, was basis for the current STE-QUEST design.

Optical Reference Cavity

Required performance:

- σ_y(τ) < 3·10⁻¹⁵
 for τ = 1 s to 100 s
- drift uncertainty < $2 \cdot 10^{-16}$ /s over 1000 s

Design drivers:

- thermal noise requires length \geq 5 cm
- even ultralow expansion glass (ULE) requires temperature control to $\Delta T < 1 \text{ mK}$
- vibrations in space at the µg level: mounting structure and support designed to achieve sensitivity $\delta v/v < 3 \times 10^{-10}$ /g
- launch conditions
 - keep optical alignment under >20 g random vibrations shock

PB

HHUD Cavity mounting

Cavity with stubs glued.

Cavity fixed to the frame.

L = 100 mm ULE spacer temperature-compensated fused silica mirrors thermal noise $\sigma_y \approx 4 \times 10^{-16}$ vibration insensitive mounting at ridges in multiple points

optical setup for the MOLO cavity

small optic board (130 mm × 160 mm) attached to cavity chamber

active alignment by two motorized mirror mounts

Optical Reference Cavity

NPL design: Squeezed cubical cavity L = 5 cm suppression of vibration sensitivity due to high symmetry $\delta v/v < 2.5 \times 10^{-11}$ / g

S. Webster and P. Gill, Force-insensitive optical cavity, Opt. Lett. 36, 3572 (2011)

Ultrastable Laser:

1064 nm Laser baseline: TESAT Laser from Laser Communication Terminals: TRL 9

Ongoing Studies on Cavities:

- mounting of cavities
- vibration and shock tests of cavities
- radiation tests of optical cavities and coating (U Birmingham, HHUD)
 - very promising results minor changes on finesse
- thermal testing of cavity setups

Frequency combs at HHUD and PTB

HHUD: First results

Tightly stabilized comb

In-loop error of DRO:

Microwave Phase lock opeating with sufficient bandwidth

Next:

Comparisont to PTB system

MOLO test at PTB

- femtosecond comb is used as loosely locked transfer oscillator
- corrections to microwave output are applied in real time
- currently employed with PTB's Cesium fountain clock

PTB transfer method

comparison of two systems with the same optical reference

B. Lipphardt et al. IEEE Trans. Instrum. Meas. 58, 1258 (2009)

PTB transfer method

comparison of two systems with the same optical reference

Sensitivity to fs-comb properties:

Conversion factor $\Delta \phi$ per $\Delta P/P$ of an InGaAs PIN photo detector due to saturation and space charge:

Intensity noise of comb may limit phase noise.

Phase noise can be suppressed by using an optimized and stabilized power at the photodetector

PPC: power-to-phase conversion (Discovery Semiconductor diode)

W. Zhang, T. Li, M. Lours, S. Seidelin, G. Santarelli, and Y. Le Coq Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation, Appl. Phys. B **106**, 301 (2012)

Conclusion

MOLO baseline design available

requirements on phase noise and stability can be achieved

Cavity designs under test

vibration and thermal test inpreparation

Microwave extraction

- comparison HHUD-PTB systems in near future
- determine parameter sensitivities
- estimate performance with MENLO Systems
 FOKUS comb

Demonstration of sufficient technological readiness by Sept. 2013

