# Science Drivers for Small Missions in High-Energy Astrophysics

Luigi Piro IAPS/INAF



Luigi Piro

CAS-ESA Workshop – Chengdu Feb. 25, 2014

# Summary

- Small missions: either focussed science case or serve as pathfinders and sentinels
- Topical science cases:
- GRB as beacons at high-z
- Wide field X-ray sky monitoring and survey
- Polarimetry

# Why GRBs

- Uniquely luminous transient sources at cosmological distances.
- Powerful probes of the universe, beacons into the Dark ages
- Laboratories for matter and radiation under extreme conditions.





- formation takes place in galaxies <u>beyond the reach of JWST at z > 8</u>; their nature will hardly be known, but they will be GRB hosts.
- There will likely be no direct detections of population III sources; pop III collapsars predicted to produce GRB-like events.



### Follow-up of high-z GRB with large facilities Optical/IR abs. • X-ray spectroscopy of th

Luigi Piro

spectroscopy of the host

ightarrow

galaxy

xiaps 💉 🔛

• X-ray spectroscopy of the t progenitor environment

z=8.2 simulated E-ELT afterglow spectra





ESA L2 X-ray Observatory

CAS-ESA Workshop – Chengdu Feb. 25, 2014



#### Science requirements for (high-z) GRBs

- About ~ 50/yr at z>7
- FoV >~ 1 sr (about 15 in 3 yrs)
- Mixed popII, II.5 and III, with popIII dominating at z>10
- To catch popIII collapsar (long and faint) requires a X-ray sensitivity of ~10<sup>-12</sup>-10<sup>-11</sup> (0.1-1mCrab) in 1000-10.000 s (enabled by focussing techniques as Lobster-eye optics)







# Finding off-axis jetted mergers/GRBs





### The fourth dimension: Polarimetry

- Polarimetry probes physics of photon emission and propagation Polarization measurements allow us to study:
  - Scattering geometry Magnetic fields Strong gravity







#### Observational status (

- Insofar only Crab in X-rays (OSO 8), other results from hard X-rays (Integral, GRB GAP)
- Crab Nebula:
  - X-rays from nebula 19.2%±1.0%; (Weisskopf et al. 1978)
  - $\gamma$ -rays (INTEGRAL IBIS&SPI): (46 ±10) % (Forot et al. 2008)
  - High-energy electrons responsible for the  $\gamma$ -rays polarized photons are produced in a highly ordered structure close to the pulsar while X-rays sample larger region (thus lower fraction)
- Cyg X-1: a polarized jet component dominating >300keV (INTEGRAL)
- GRBs: polarization in the prompt: nature of the relativistic jet. INTEGRAL GRB 041219A 96%+-40% (Kalemci et al 2007), Ikarus GAP (Yonetoku et al 2013): GRB110301A 70%±22%, GRB110721A:84(+16,-28)%







### Observational status (II)

- Quantum gravity theories predict Lorentz Invariance Violation (LIV):
- Velocity and phase (pol. Angle) dispersion (Mpl=Planck scale=2.4 10<sup>18</sup> GeV)
- From Crab:
- X-rays:  $\xi < 10^{-4}$
- Gamma-rays  $\xi < 10^{-9}$
- From GRBs  $\xi < 10^{-15}$

$$\begin{aligned} \omega_{\pm} &= |p| \sqrt{1 \pm \frac{2\xi k}{M_{Pl}}} \approx |k| (1 \pm \frac{\xi k}{M_{Pl}}) \\ \\ \overbrace{\Delta\theta(p)}^{} &= \frac{\omega_{+}(k) - \omega_{-}(k)}{2} d \approx \xi \frac{k^2 d}{2M_{Pl}} \end{aligned}$$

🔉 🔅 🎬

# X-Ray Polarimetry: key drivers

- Astrophysical measurements (radiation processes, source geometry)



### X-Ray Polarimetry: key drivers

Strong Gravity: Effects of General and Special Relativity on X-ray polarization in BH & NS. Measure of BH spin Quantum Electro Dynamics : Vacuum Polarization & Birefringence in strong magnetic fields. Measure of B field in

magnetar





### Science requirements

Spectral resolved polarization for bright galactic sources and (~1% for a flux > 10 mCrab with ~10<sup>5</sup> s and enable measurements ~ few % on brightest AGNs





### Conclusions

- High-z GRBs and popIII GRBs require large FOV and high sensitivity monitor (e.g. Lobster eye)
- EM counterparts of GW drives a similar requirement for the Wide Field X-ray Monitoring
- Add to the era of Large monitor/surveys (DES, LSST, PTF, LoFAR) the X-ray view
- Physics of GRB and LIV: gamma-ray polarimetry of the Prompt emission
- Physics of compact sources and GR: high sensitivity (photoel. Effect) X-ray polarimetry with optics

